
IB Computer Science Project Development (1)

Investigate

If you can't play chess, you probably can't write a program that plays chess.

The programmers (in the real world they're called developers) must investigate the problem and learn

something about the users' needs and problems. This facilitates later discussion and cooperation with the

users. It also gathers enough information to produce a proposal or a prototype.

Prototype

The first loop around the spiral produces a prototype - a very simple version of the program - to show to the

users what you "have in mind". Then you can have a discussion about what to do next - what to add, how to

change the way it looks, etc. Most users assume that software development is automatic. They want to sit

back and wait for the result to be produced. They are not able to engage in a useful, productive discussion

about the design. The prototype helps them discuss the project.

Do the prototype quickly, don't spend much time on it. Assume that you will throw most of it away!

Redesign

Now the real design can start. The user has a better idea of the direction of the project. The programmer

has a better idea of some of the problems they will face when writing the program.

Needs ���� Goals ���� Tasks ���� Interfaces + Events ���� Data Structures + Algorithms ���� Program

----------- User ------------------------------------- ����

  ---------------------------------- Programmer --------------------------------

The user carries responsibility for the left side, the programmer takes responsibility for the right side.

In the middle, some discussion is necessary to produce interfaces which are both usable and functional.

Remember : the user will be part of the system - they will need to make their parts function later.

Iterative Software Development

Users and programmers ** cooperate **

to produce a usable and functional system.

Development iterates (spirals) through stages :

 Prototype
 - proof of concept, feasibility

 Alpha version

 - barely functioning

 Beta version

 - almost finished

 Release version

 - Finished ! (?)

Programmers are not

involved in installation

or maintenance, just as

users are not involved in

writing the program. They

cooperate in design and testing.

 Design

 Solution

 Write

Program

 Test &

 Debug

Install &

Maintain

P A B

Release

IB Computer Science Project Development (2)

Top-Down Design

The design of the solution must start with the user's needs, and end with a program written in a

programming language - not the other way around. The development cycle allows feedback and redesign to

occur, when it becomes obvious that some tasks or goals are unrealistic and cannot actually be programmed.

However, working in the other direction (bottom-up) usually produces programs which are too simple and

difficult to use.

No mess! Clean Up & Get Organized

Java provides a very sensible structure for successful top-down design and program production - this

explains why it is so popular. However, it allows too much flexibility for a beginner (e.g. IB student). A

big Java program can become very messy if you are not careful. The following production model should

help you produce a project which is well organized and conforms to the IB requirements.

1. Goals

2. Tasks ���� Menus

3. Interfaces ���� Frames = text-boxes + buttons + lists

4. Data Structures ���� Variables , Records, Arrays , Files, etc.

5. Algorithms (automation) ���� Modules ���� Pseudo-Code ���� Subs + Functions

6. Programming ���� Standard commands + Procedures + Parameters

Suggestion - Use ONE Form + Menus + Frames

Multiple forms seem cool and well organized, but as the program gets bigger they will cause more and more

problems. It is tricky to share code and controls between forms. It is difficult to force the user to use only

one form at a time, and even more difficult to write a program that works when several forms are open.

For each task, make a menu item that makes a different frame (window) appear. If you have several

frames on top of one another, the command to make FrameX visible is:

 new FrameX

So you can write a separate interface class for each task. But don't get carried away – if you have more

than 3 or 4 interfaces, you will WASTE TOO MUCH TIME on the user interface, and there is no reward for

this in the IB assessment criteria.

Menues

Have a look in How-To at the Menues example. This is not a requirement, but you might find that it helps

you organize your program.

IB Computer Science Project Development (3)

Decomposition - Breaking Things Down

Your solution should be hierarchical (like an upside-down tree). It looks more or less like this:

Normally the data-structures do not appear on the same diagram with the procedures.

This was done here to illustrate the relationship between algorithms and data-structures.

Student Interface

Find List All

Teacher Interface

Task C Task D

Setup Interface

Task E Task F

 Problems ?

 Solution !

Complete System

 FIND

o Load

 o Search

 o Save

 LIST ALL

o Load

 o Sort

 o Display

 Process C

 - Step 1

 - Step 2

 Process D
 - Step 1

 - Step 2

 Process E
 - Step 1

 - Step 2

 Process F
 - Step 1

 - Step 2

Search

 Sort

 Input Name

 Find in M

Load
 Input

D�M

Save
Output M

 into D

Sort
 Bubble-

 Sort M

Students

Data File

Procedures (algorithms)
 (Subs, Functions)

 ���� Algorithm (method)

 +

 ���� Commands (VB)

 Loops, Decisions, Variable Types

 Functions, Procedures, Constants

Data Structures
���� Variables

���� Arrays

���� Records

���� Files

Array

 M

Display M

Devices

Input
 Keyboard

 Mouse

Storage
 Disk Drives

 Network

Output
 Screen

 Printer

IB Computer Science Project Development (4)

Complexity

You will notice that as more and more modules (procedures and data-structures) are added, the diagram

becomes unreasonably complex. The complex part is better displayed in the form of an outline.

It is tempting to write a new procedure from scratch for each new task. The apparent simplicity is deceptive.

This produces many copies of similar or identical code. Any changes become very difficult later, as so

many copies of the same code must be changed.

Re-Use - The Magic Pill for Successful Programmers

Without re-use, the tree becomes larger and larger at the bottom. Through re-use, there can be far fewer

modules at the bottom. In the example, the Load and Sort procedures are re-used in two different tasks.

Re-use keeps the program shorter, simpler, and easier to change.

Without re-use, the tree becomes larger and larger at the bottom. Through re-use, there can be far fewer

modules at the bottom.

Naming

You need to adopt a naming-convention. Otherwise, re-use is extremely difficult. You will constantly be

looking through your program trying to find the name of something. If the names of variables and

procedures follow a pattern, you have a better chance of remembering them.

Many Small Modules

The best approach to re-use is to make every procedure as small as possible, confining it to a very specific

job. Then combine and re-use these to accomplish many different tasks. Also use parameters to increase

the flexibility of your modules. For example, a sorting module which can only sort one specific array is less

useful than one which accepts the array name and then sorts that array.

Pseudocode

Write pseudocode BEFORE writing procedures. This lets you design the functionality and interface

(parameters) sensibly. This takes time - you will feel like you are wasting time, writing the same ideas in

pseudocode that you are going to write as Basic commands. But if you do this correctly, it will save time in

the long run. As you write the pseudocode, you may realize that you are combining several tasks in one

procedure, so you can split it up BEFORE you have written a long, complex procedure. You will also

recognize possible problems and causes of errors ahead of time.

Documentation

Even with sensible names, you won't remember everything. This is where documentation comes in.

Documentation includes:

� Pseudocode for all algorithms - at the beginning of all complex procedures - those which contain loops

or if..then.. commands and do something difficult or interesting

� Data structures - a list of files and arrays and their intended purpose

� Comments in procedures, telling what various pieces do

� Diagrams on paper - the hierarchical diagram above is just one example

� User documentation - goals and instructions - this helps you remember what you were trying to do

� Test data - rather than making up new test data every time you run the program, it is much easier to

write down a standard set of test data for each part of the program.

IB Computer Science Project Development (5)

Good Names

Use variable and control names following a naming convention – it should be consistent and clear.

For example:

Methods – the name should be a VERB, because it DOES SOMETHING

Variables – the name should be a NOUN, because it CONTAINS SOMETHING

Class – the names should be a NOUN

Controls – start with a letter or letters indicating the TYPE of the control, as suggested below:

"Official" Naming Convention
 Start control names and variable names with 3-letter

prefix

My Simple System
 1 letter + Capitalization

Variable Names

Boolean bln

Double dbl

Date+Time dat

Long lng

Integer int

Single sng

String str

Control Names

b Button m Menu

k Checkbox o Option Button

c ComboBox p Picture

f Frame s Shape

i Image t TextBox

l ListBox

Variable without prefix

Control Names

Checkbox chk

Combobox cbo

Command Button cmd

Form frm

Frame fra

Image img

Label lbl

Listbox lst

Menu mnu

Option Button opt

Picture pic

Shape shp

Text Box txt

"Official" Sample Code

Button btnCalc = addButton...

intAge = 21;

intBorn = 2001-intAge;

blnOK = checkAge(intAge);

if (blnOK = = true)

{ output("Okay") ; }

My Simple Code

Button bCalc = addButton....

age = 21;

born = 2001 – age;

ok = checkAge(age);

if (ok = = true)

{ output("Okay"); }

Use whole words for names – you would only use a single letter for a temporary counting variable.

Comments

You MUST write comments BEFORE writing Java methods. This will help you clarify and focus your

thinking, making the programming easier. Whether you find it easier or not, you MUST do it because it is a

REQUIREMENT. You will be heavily penalized if you don't do this.

Each method requires starts with a comment containing the following:

• description / purpose

• parameters list (with brief explanations if the names are not clear)

• pre-conditions (before)

• post-conditions (after)

• return value

• Pseudo-code – English language step-by-step instructions. Be sure to mention loops if needed.

Sample Program - A sample program follows, showing proper comments and a consistent naming

convention. This is only part of a program.

IB Computer Science Project Development (6)

/* Dictionary.java

 *

 * Created on 14. November 2006, 09:51

 * @author dave mulkey

 */

/* Dictionary ADT

 *

 * Stores pairs of Strings as (Item,Value). For example:

 *

 * "Font" , "Arial"

 * "Color", "blue"

 * "Author", "John Hancock"

 * "Author", "Alfred Hitchcock"

 * ...

 * Duplicates are permitted for Items.

 * Allows retrieving a Value by searching for an Item

 */

public class Dictionary {

 /*

 * items[] and values[] are parallel arrays

 * they will be created (and sized) in the constructor

 */

 String[] items ;

 String[] values;

 public Dictionary(int size)

 /* Creates a new Dictionary

 *

 * Params: size = maximum number of item/value pairs

 * Before: nothing required

 * After : items[] and values[] have been created

 * with the required size

 *

 *-- pseudocode -----------------

 * Use new String[size] to create arrays

 */

 {

 items = new String[size];

 values = new String[size];

 }

 public Dictionary()

 /* Creates a new Dictionary

 *

 * Params: none

 * Before: nothing required

 * After : items[] and values[] have been created

 * with the required size

 *

 *-- pseudocode -----------------

 * Use new String[1000] to create arrays

 */

 { items = new String[1000];

 values = new String[1000];

 }

 public boolean add(String item, String value)

 /* add a new Item/Value pair

 *---------------------------------

IB Computer Science Project Development (7)

 * Params : item , value contain Strings to add

 * Before : items[] and values[] have been created

 * After : item/value pair have been added

 * Return success (true) or failure (false)

 *---------------------------------

 * Problems:

 * must reject null item or null value (return false)

 * if array is full, return false

 *---------------------------------

 * pseudocode:

 * Use a loop to search for an empty spot in items[]

 * If it reaches the end of the array (no free spots)

 * then return false (failure)

 * else

 * copy item into items[] and value into values[]

 */

 {

 if (item == null || value == null)

 { return false; }

 int p = 0;

 while (p < items.length && items[p] != null)

 { p = p + 1; }

 if (p < items.length)

 {

 items[p] = item;

 values[p] = value;

 return true;

 }

 else

 { return false; }

 }

 public String getValue(String target)

 /* Search for target in items[]

 * if found, returns matching value

 * else returns null

 *------------------------------------

 * Params : target is the String to find in items[]

 * Before : items[] and values[] must exist

 * After : return matching value if found,

 * else return null

 *------------------------------------

 * pseudocode:

 * loop through the items[] array

 * if items[p].equals(target)

 * return values[p]

 * if we get here, return null (not found)

 */

 {

 for (int p=0; p < items.length; p++)

 {

 if (items[p]!=null)

 { if (items[p].equals(target))

 { return values[p]; }

 }

 }

 return null;

 }

}

