
IB Computer Science New Course Teaching Plan (2012-14) Dave Mulkey. Germany, 30 July 2012

Teaching Plan 2012-2014 - Core Syllabus and Options for SL - Overview
This starts with an overview (p 1-3). A detailed plan follows on p. 4 , but is not finished.

This plan is compatible with the book Computer Science Illuminated , which starts at the top (overview), works it’s way down to the bottom (details),
then builds back up to the top (system design and expansion).

(A) Studying Existing Systems
• History A brief history of Computer Science
• Finished Systems – what have students seen and used [1.1]

– PCs, Cell Phones, Web-sites, Databases …

• Software and Applications [1.2]
OS vs Applications, standard features and uses
Users and Usability

• Hardware [2.1.1-8]
Standard Devices – input, output, storage, processing
screens, keyboards, disks, RAM, CPU

• Digital Computing [2.1.9-13]
binary, logic circuits

(C) Implementing Automated Systems (from a finished design)
• Using Production Tools – depending on the chosen option,

this will be databases, web-sites, OOP or modeling,
so this might be web-site builders, data-base tools,
spreadsheets and other modeling tools, or an OOP tool
like Scratch or some other high-level programming tool

• Introduction to programming (first experience) [4.3.6-9]
- input / output
- variables and calculations
- decisions (branching)
- loops for repetition

• Nature of Programming Languages [4.3.1-5]
Compare the language used above to another similar language,
e.g. compare Java to JavaScript, Basic to VBA, Scratch to JS

(B) Understanding Automation – Computational Thinking
 How do existing systems accomplish the “work” they do? Investigate.

• Decisions – thinking logically, rules (real world vs systems)[4.1.4]
• Procedures – breaking problems into pieces (modules) [4.1.1]
• Planning – thinking ahead, data and testing, IPO [4.1.9]
• Abstraction – representing data and information as data, [4.1.17]

data-structures, rules and modules
• Concurrency – vs iteration, breaking problems into [4.1.14]

pieces to be processed in parallel, distributed processing, networks

(D) Networks and Communication
• Study Existing Networks – Internet, cell-phones, [3.1.1-5]

e-mail, wireless devices
• Data transmission – protocols, packets [3.1.6-11]
• Wireless networking – hardware, protocols, security [3.1.12-16]

(E) Sharing and Re-using Data

• Programming (part 2) - data-collections, [4.3.10-13]
arrays, sub-programs

• Sharing data in a LAN – text-files, peer-to-peer [extra]
• Planning programs - flowcharts, prototypes [extra]

It's unclear how much time each section should take – that will depend on the students' backgrounds. Perhaps 4-6 weeks each.
I'm inclined to make one quick pass through A,B,C,D, maybe in 3 months, and then go through A,B,C,E again in more depth, another 2 months.

IB Computer Science New Course Teaching Plan (2012-14) Dave Mulkey. Germany, 30 July 2012

Teaching the Option – finishing Year 1 - Overview
The Option would occupy the rest of the time in the first year of the course. So SL students should have completed most of the syllabus in one year.

For the OOP option, it makes sense to teach the option AFTER (E) above. Then while teaching the option, making occasional references and
connections back to the rest of the syllabus.

For the Database, Web and Modeling options, it probably makes more sense to make references to the option during the original syllabus coverage, and
then work on the specific option details after (E) above. Here is a brief plan for the extra option work for SL – the parts after (E) above.

Databases Modeling and Simulation Web Science OOP
Example Data/Info Systems [A.1]
- compare data-driven web-sites
 to static web-sites
- study a DB system at school -
 e.g. attendance, scheduling,
 library – and identify features
 that make it different from
 a web-site or a document
- discuss issues of multiple-access
 and distributed processing vs
 centralized processing

Relational Databases [A.2]
- study existing databases
 at school and define essential
 features and vocabulary
- discuss the essential issues
 in database design
- build small sample databases using
 a relational DB tool (MSAccess)
- discuss scalability, reliability,
 usability
- discuss higher level design issues,
 normalization, keys, relations
- construct queries & reports

Basic Modeling [B.1]
- investigate some existing models
- outline standard situations
 where models are used
- data and variables
- formulas and rules
- data-collections
- test-cases
- assessing effectiveness
- revise model, improbe correctness

Simulations [B.2]
- compare models to similutions
- rules that connect with reality
- data-representations
- compare various forms of data
 representation and organization
- construct simple models and
 compare them
- construct simple simulations
 and compare effectiveness
- practice changing rules,
 formulae and algorithms
- assess reliability and correctness
- discuss using sims for predictions

Creating the Web [C.1]
- Web infrastructure – protocols,
 technologies
- Web basics – URL, DNS, IP,
 HTML, packet switching,
 routing, etc.
- What is in a web-page?
 – HTML
 – tags vs content
 – JavaScript
 – multimedia
- static vs dynamic vs
 data-driven web-pages
- browsers
- clients, servers, CGI

Searching the Web [C.2]
- search engines – several examples
- crawlers, spiders, indexing
- meta-tags, text content
- search engine optimization
- web metrics
- algorithms and AI in crawlers
 and search engines
- search engine growth

Objects as a Concept [D.1]
Teach this with little Java detail,
with simple programming examples
- classes vs objects
- choosing objects/classes for
 a problem
- choosing objects for data
- choosing objects for behaviors
- roles and dependencies of objects
- UML for design & documentation

Features of OOP [D.2]
Now teach more Java details
- encapsulation, especially for data
 objects
- polymorphism, especially for
 active objects (with methods)
- inheritance, for both data objects
 and active objects
- libraries and class hierarchies
- advantages and disadvantages

Program Development [D.3]
Now teach all the Java details.
This is probably connected to the

IB Computer Science New Course Teaching Plan (2012-14) Dave Mulkey. Germany, 30 July 2012

Database Management [A.3]
- safety and security
- documentation and training
- reliability and efficiency
- communication, connectivity,
 compatibility and accessibility
- data-mining, data collection,
 validation and verification

Visualization [B.3]
- investigate 2D visualization
- investigate 3D visualization
- outline memory needs of
 2D and 3D visualizations
- discuss time and memory
 requirements of 3D animation

The Evolving Web [C.3 – C.4]
- mobile computing
- peer-to-peer
- ubiquity
- new and future uses
- distributed systems
- social networking
- cloud computing
- effects of new developments
 on individuals and organizations
- what enables/disables progress?

Project, so examples should include
relatively large programs (several
hundred lines of code).
- varaiables and parameters
- methods – acccessor, mutator,
 constructor, signature, return value
- modifiers – private, public, static..
- connect OOP to core programming
concepts, e.g. using OOP syntax
in relatively simple programs
- OOP helps internationalization
- OOP helps testing

Year 2 - The Project , Finishing HL and Review

Year 2
At the beginning of year 2, students begin
their project. This would involve about 4
weeks of investigation to get started. After
that the students develop the product.
Students must have frequent contact with their
advisors during the entire project period.

There is ample time for SL students. They
can make a 3rd pass through the entire
syllabus, nailing down vocabulary and
essential topics, and reviewing past-papers.

HL students still need to finish the HL
extensions, which means they will have less
in-class time to work on projects and less in-
class time for review.

Starting the Project (1 week)
Presumably most students will use the skills
learned in the Option to create their project.
- choose a topic area
- identify a problem
- choose an advisor
- write an intitial proposal for teacher
approval

Planning the Project (1-2 weeks)
The plan should include
- preliminary list of tools to be used
- decomposition in tasks
- timeline for completion of tasks

Design the Product (1-2 weeks)
- create a prototype
- discuss the prototype with the advisor
- modify and repeat

Develop the Product (4-6 weeks)
The tasks and time requirements will be different for
various projects. This includes testing and debugging.

Documentation (2 week)
- discuss the product with the advisor
- create video(s) of the functioning product
- evaluate and recommend improvements

Package and Submit the Project (1 week)
Teachers should help with this, ensuring that all files
are in the proper format and function correctly.

IB Computer Science New Course Teaching Plan (2012-14) Dave Mulkey. Germany, 30 July 2012

Existing Systems (detailed plan)

General
Area

Experience/
Essential Questions Investigate / Explore

Core
Assessment

Comments

Systems Are all computer systems
the same? If not, what are
some common types?

Run standard software and look at common
uses of standard computer systems:
Web-site, database, word-processor,
spreadsheet, communication (email, SMS...)

1.1.1

What does "compatibility"
mean? To what extent are
various systems compatible
or incompatible?

Compare/convert file-types and test the
compatibility:
HTML vs wp-doc,
graphics types,
animation vs video,
database vs spreadsheet
...

1.1.3
1.1.6

How are computer systems
chosen? What purpose do
they serve?

Investigate computer systems that are used
around the school, at home and at parents'
workplaces:
Windows vs Mac platforms
Office programs
Educational software
Communication systems(SMS, email),

1.1.1
1.1.5

What are differences
between local applications,
"apps" and online systems?
What is Software as a
Service?

Find an application, and app and an online
system that offer similar functionality.
Install all three and compare their features
and performance, for example:
MS-word, Google docs, a notes app

1.1.4

What are standard ways to
provide support and
documentation?

Choose one computer system and find
various types of support and documentation
for that system. Assess their effectiveness.
Compare a system with poor documentation
to one with comprehensive documentation.

1.1.8
1.1.9

IB Computer Science New Course Teaching Plan (2012-14) Dave Mulkey. Germany, 30 July 2012

Systems How are new systems
installed? What problems
must be managed?

Install a new piece of software for a specific
task, e.g. a graphics editor. Compare it to
software that was previously used.
Discuss students' experiences with new
devices at home, e.g. getting a new cell
phone or a new PC. What problems
occurred? How are they solved?

1.1.2

How can user training be
implemented? What are
good and bad methods?

Read stories about problems that happened in
businesses. Compare the stories to more
local problems around the school and home.
Compare "for idiots" books to more standard
books.

1.1.10

How do we ensure that
computer systems work
reliably?

Practice making backups, deleting data and
then restoring it from backup.
Practice changing passwords.
Try "cracking" passwords on a test account.
Investigate backups of online services.
Discuss the schools "backup strategy" and
compare it to students' personal backup
strategies.

1.1.11
1.1.12
1.1.13

How can hardware and
software be tested?

Try out some standard tools, like:
benchmark software, system process
manager,

1.1.7

How and why are updates
managed?

Investigate the following updates:
OS (Windows) , browser , virus scanner
How often do they occur? Why are they
necessary? What improvements are
achieved?

1.1.14

How are PCs and
organizational computer
systems different?

Interview an IT support employee at school.
Ask them to compare the problems they solve
at school to the problems they solve at home.

1.1.1 - 1.1.14

IB Computer Science New Course Teaching Plan (2012-14) Dave Mulkey. Germany, 30 July 2012

Software / Applications (detailed plan)

General
Area

Experience/
Questions

Investigate/Explore Core
Assessment

Comments

SW types What is the difference
between OS and
applications?

Compare features of PC OS to features in a
smart-phone. Find tasks that work better on
one device than the other.

2.1.6

SW standards What comprises a
"complete" or "standard"
set of software?

Read ads for new PCs, smart-phones, etc and
compare software packages.

2.1.7 Avoid discussing prices - use middle cost
examples rather than the extremes

Usability
and HCI

What do various users need
or want from software?

Interview a variety of types of users:
young students vs old students
students vs teachers vs administration
home users vs office users (parents)
producers vs consumers

1.2.12
1.2.15

How can we assess
usability?

Compare ease of use of various devices:
- telephone vs cell phone vs smart-phones
- PC vs netbook vs tablet
- Wireless vs wired devices
Read "comparison" articles in magazines
Suggest usability issues and make a possible
check-list to rate usability

1.2.12
1.2.13

How can usability be
improved?

Investigate some software upgrades, plug-ins,
patches, etc that might improve usability

1.2.15 Need to repeat this when discussing HW

What special needs do
various users have?

Investigate programs that increase
accessibility, e.g.:
- One Laptop Per Child
- Indian $50 tablet
- rich vs poor
Investigate accessibility for the disabled

1.2.14
1.2.16

IB Computer Science New Course Teaching Plan (2012-14) Dave Mulkey. Germany, 30 July 2012

Hardware / Components

General Area Experience/
Questions

Investigate/Explore Core
Assessment

Comments

HW What components should
a computer system
include?

Examine and compare :
PC , portable (e.g. tablet) , server
Identify the normal components:
Memory - RAM, ROM , Cache
Storage - disk, Flash, cloud
Processor - fast vs slow, low power

2.1.2
2.1.5

Why are SmartPhone
interfaces different and/or
similar to PC interfaces?

Identify similar and different features in PC
interfaces and phone interaces.

2.1.8

How are memory sized,
especially memory cards,
measured? Why are the
numbers so strange?

Students bring a variety of devices and extra
memory cards and USB sticks to class.
Compare sizes and data-transfer-speeds.

2.1.9 Define: byte, kilobyte, megabyte, gigabyte
Define data-transfer-speeds (e.g.
bandwidth) in both megabits and
begabytes

Fundamentals How is data actually
stored inside a computer?

Use a hex-editor to examine the contents of
various file types - text, documents, html
page, graphics. Try making meaningful
changes in the files, after learning the
meaning of binary and hexadecimal.

2.1.10 Define: bit, bit-map, binary code, ASCII,
binary, hexadecimal, decimal

What can be changed or
upgraded to make a
computer faster?

Compare simple tasks on various machines,
like copying files, reformatting a document,
converting video formats, uploading and
downloading files.
Read advertisements and discuss which
upgrades might be sensible, and how they can
improve performance.

various

Where do speed ratings
come from?

Examine processor speed ratings in tables.
Run a couple of standard benchmark tests.

various Define the term "mobile processor"

IB Computer Science New Course Teaching Plan (2012-14) Dave Mulkey. Germany, 30 July 2012

Notes to Readers

I'm not sure the time allocations are very exact, but I think they are roughly correct.

Here are some general ideas:

1. Comp Sci is now in group 4. We don't really do “experiments” as such, as we are not “discovering” natural laws. We are not actually an
“experimental science”. However, observation and investigation should be part of the course. Topics should start with (or include) some sort
of experience and investigation. Reading is still useful, but it would be a shame to teach this as a textbook course, just learning vocabulary.
Although vocabulary is necessary, I'm pretty sure it will be difficult to pass exams without a substantial background in investigation and
problem solving. Hence, I'd prefer to outline a set of investigations which cover the syllabus, rather than outlining topics as described in the
course guide.

2. In the old course, programming occupied a central role. Along with that, the size of the IA dossier forced us to concentrate on creation and
production of programs. Now in the new course we can spend more time observing and investigating, as the production requirements are
much more modest. “Understanding” should now be as important as “creating”.

3. The reduced role of programming is compensated by the introduction of “computational thinking”. Although students enjoy programming and
the satisfaction that comes when a program runs successfully, it's important now that the students can also think about and discuss problems
and solutions without necessarily implementing them. Presumably this will be the major expectation in exams. Hence any teaching plan
should emphasize computational (algorithmic) thinking in a variety of contexts, including but not limited to programming or other use of tools.

4. For me, the major question throughout the course is: “What is happening inside computer systems and how is it happening?” Computer
systems are our experimental playground, just as living creatures are the arena for biologists and the laboratory is the place for doing chemistry.
Understanding data representations, algorithmic processes and automation is the key to understanding how computer systems function.
Investigations help us to ask questions, then reading and lectures should help the students answer them.

5. There will be a wide variety of backgrounds among the students in a class, and an even wider variety from school to school. Hence the amount
of time spent on a specific investigation may be larger or smaller, depending on the needs and backgrounds of the students. Some students have
already used the task manager frequently, but others have not. Hence specific times for specific items cannot be suggested with any accuracy.
They will probably even change from year to year in the same school with the same teacher.

