
IB Computer Science SL Paper 2 - Mock Exam - Dec 2013 (1/6)

COMPUTER SCIENCE
STANDARD LEVEL
PAPER 2

MOCK EXAM

1 hour

__

INSTRUCTIONS TO CANDIDATES

• Do not turn over this examination paper until instructed to do so.

• Answer all questions.

IB Computer Science SL Paper 2 - Mock Exam - Dec 2013 (2/6)

Option D - Java and Object Oriented Programming

System Overview

A school maintains a CONTACTS database of contact information. This is used to send e-mails
and/or make phone calls to students, teachers and parents.

By using this database, the school can do all of the following more efficiently:
- send emails to large groups, like "all parents" or "all grade 12 students" or "Upper School teachers"
- quickly look up a phone number to contact parents in an emergency like an injured child
- teachers can contact students in their classes
- students and their parents can contact specific teachers

The database has a user-friendly GUI interface, allowing administrative staff to add and edit data, as
well as allowing all users (parents, teachers and students) to look up contact information.

Objects

There are several objects in the CONTACTS database:

Object Description

Person A base class for any person : name , phone , email address, ID (a unique integer)

Student Any student enrolled at school : [Person] + grade , homeroom teacher

Parent Any parent of a student : [Person] + business phone, business email

Teacher A teacher working at school : [Person] + class room phone, homeroom grade

List
LinkedList

A list of Objects - could be a list of Students or Parents or Teachers
 or any mixture of these Objects

Phone Numbers

The phone field contains the home phone number, as a complete phone number like "603-1234".
The business phone is also a complete phone number, e.g. "987-6543"
The classroom phone is a 3 digit internal extension, like "276" - this only works inside the school.

IB Computer Science SL Paper 2 - Mock Exam - Dec 2013 (3/6)

Code

Part of the code for each Class is shown below. The code may be incomplete in places where the
information is not needed for this exam, or where the code must be completed as part of the exam.

public class Person {
 private String name = "";
 private String phone = "";
 private String email = "";
 private int ID = 0;

 public Person()
 { }

 public Person(String n, String p, String e, int i)
 {
 setName(n);
 setPhone(p);
 setEmail(e);
 setID(i);
 }

 public void setName(String n) { name = n; }
 public void setPhone(String p) { phone = p; }
 public void setEmail(String e)
 { if(checkEmail(e) == true)
 { email = e; }
 else
 { email = ""; }
 }
 public void setID(int i) { ID = i; }

 public String getName() { return name; }
 public String getPhone() { return phone; }
 public String getEmail() { return email; }
 public int getID() { return ID; }

 public boolean checkEmail(String e)
 {
 if(e.indexOf('@') > 0) // find @ sign
 { return true; }
 else
 { return false; }
 }
}

IB Computer Science SL Paper 2 - Mock Exam - Dec 2013 (4/6)

public class Student extends Person
{
 private int grade = 0;
 private String homeroom = "";

 public Student(String n, String e, String p, int i, int g, String h)
 {
 setName(n);
 setEmail(e);
 setPhone(p);
 setID(i);
 setGrade(g);
 setHomeroom(h);
 }

 public void setGrade(int g)
 { if(g > 0 && g < 13)
 { grade = g; }
 }
 public void setHomeroom(String h) { homeroom = h; }

 public int getGrade() { return grade; }
 public String getHomeroom() { return homeroom; }

}

public class Teacher extends Person
{
 private int grade = 0;
 private String homeroomPhone = "";

 public Teacher(String n, String e, String p, int i, int g, String hp)
 {
 setName(n);
 setEmail(e);
 setPhone(p);
 setID(i);
 setGrade(g);
 setHomeroomPhone(hp);
 }

 public void setGrade(int g)
 { if(g > 0 && g < 13)
 { grade = g; }
 }
 public void setHomeroomPhone(String hp) { homeroomPhone = hp; }

 public int getGrade() { return grade; }
 public String getHomeroom() { return homeroomPhone; }
}

IB Computer Science SL Paper 2 - Mock Exam - Dec 2013 (5/6)

#1

(a) Explain what a constructor method is, including a specific example
 chosen from the code on the previous pages, as well as a brief explanation
 of how and when the constructor functions. [3 marks]

(b) Explain what data validation code is, and state a specific example
 that occurs in the code on the previous pages. [2 marks]

(c) Explain the term encapsulation, making specific reference to the
 sample code on the previous pages. Include an explanation of
 the connection between private data members and set methods. [4 marks]

(d) Construct the Parent class, written in Java, including all
 appropriate get methods, set methods, and properties (variables).
 You do NOT need to write any validation code. [6 marks]

===

The diagram above shows the QuickMessage interface. It contains a list with the names of all the
Students in the school, a list with all the Parents, and a list with all the Teachers. The user can click on
Students, Parents and/or Teachers, thus copying the names (and the corresponding Objects) into the
SEND TO box. When the user clicks the [Send] button, an email is sent automatically to all the people
in the SEND TO box.

Here is some of the code in the QuickMessage classk (this code is incomplete):

public QuickMessage()
{
 students = load("students"); // loads Student objects into students LinkedList
 parents = load("parents"); // loads Parent objects into parents LinkedList
 teachers = load("teachers"); // loads Teacher objects into teachers LinkedList
 display(students);
 display(parents); // displays the LinkedLists into GUI List boxes
 display(teachers);
}

// == The "load" and "display" methods are not shown here, but appear below ==//

IB Computer Science SL Paper 2 - Mock Exam - Dec 2013 (6/6)

When the user clicks the [Send] button, the following method sends emails:

//== before running sendEmails, the LinkedList sendTo must contain ==/
//== numerous Person, Student, Parent and/or Teacher Objects ==/
//== and message must contain text to be sent in the email ==/

public void sendEmails(LinkedList sendTo, String message)
{
 Iterator it = sendTo.iterator();

 while(it.hasNext())
 {
 Person p = (Person)it.next();
 sendMail(p , message);
 }
}

//== The sendMail method appears below, but is not shown here ==//

#2

(a) Outline two major differences between a LinkedList and an Array in Java. [3 marks]

(b) Construct a method that searches through the students LinkedList,
 finds a specific name, and outputs the corresponding email address.
 You must write your solution in Java. [5 marks]

(c) Construct a method that searches through the students LinkedList for all
 the students who are in grade 12. Whenever it finds a grade 12 student,
 it adds that object to the sendTo LinkedList. Write your solution in Java. [7 marks]
===
#3

(a) Explain what the term inheritance means in Object Oriented Programming,
 including a specific example where inheritance is used in the CONTACTS system. [3 marks]

(b) Outline how the use of inheritance makes it easier when programmers are
 expanding an application to add more features. [2 marks]

(c) The Person class contains error-prevention code in the checkEmail method.
 This prevents accidental errors when entering an email address.
 This method is actually too simple. It should also check more rules.
 Every email address must:

- contain exactly one '@' sign
- after the '@' sign, there must be exactly one period '.'
- there must be at least 2 characters between the '@' and the '.' period.
- there must be at least 3 characters after the '.' period
- there must be at least 3 characters before the '@' sign

 Using standard Java String methods, construct an improved checkEmail method that
 checks all the rules stated above. [10 marks]

	COMPUTER SCIENCE
	MOCK EXAM
	1 hour
	__
	INSTRUCTIONS TO CANDIDATES

