
Sample Algorithms in PURE

Algorithms from IB Examinations
Previous examination paper questions, even those that apply to an earlier syllabus, can be a
valuable resource because they can be used:

x to illustrate algorithms that relate either directly to the syllabus details
x to strengthen the problem-solving skills referred to in the introduction to Section B
x as a source of data and information for school-based tests.

This section consists of examples of questions that required candidates to trace and/or construct
algorithms and their solutions. Some are complete questions, and others are parts of questions;
they both refer to algorithm tracing or construction. In some cases solutions have been provided
because they include an algorithm as part of the answer.

All questions and solutions have been rewritten in PURE.

The questions are categorized according to year, level, paper, question number, the action on the
algorithm required, and the content area of the question. At the time of compilation the M98
papers had not yet been taken by candidates.

No
.

Yea
r

Level
&

Paper

Qu
.

Action on
Algorithm

Content of Question

1 M96 SL P1 1 Trace Summing and Averaging

2 M96 SL P1 3 Trace Counting Loops

3 M96 SL P2 1 Trace and construct Determining Frequencies

4 M96 SL P2 5 Construct If-then-else Statements

5 N96 SL P1 1 Trace Dividing and Truncating to Manipulate Single-
decimal Digits

6 N96 SL P1 3 Trace and construct Nonsense with Absolute Value

7 N96 SL P2 5 Trace and construct Calculating Typing Fees

8 M97 SL P1 1 Trace and analyse Golf Scores in Arrays

9 M97 SL P1 3 Trace Summing Loop

10 M97 SL P2 1 Construct One-dimensional Array Manipulation (Hashing)

11 N97 SL P1 1 Trace Finding the Largest Value in an Array

12 N97 SL P1 3 Trace and modify Binary Search

13 N97 SL P2 5 Construct Simulation to Count Fish

14 M96 HL P1 10 Trace and construct Highest Values in a Two-dimensional Array

15 M96 HL P2 4 Trace and construct Fibonnaci Sequence (recursive)

16 N96 HL P2 1 Trace and construct Binary Search

17 N96 HL P2 7 Trace and modify Binary Tree

18 N97 HL P1 10 Trace and construct Summing in a Two-dimensional Array

19 N97 HL P2 1 Trace and construct Random Numbers

Teacher Support Material - Computer Science © IBO, 4/2/2015 1

 Summing and Averaging (M96 SL P1 Q1)

The following algorithm fragment has been designed to analyse the temperatures at a tourist
resort.

COUNT, TOTAL, TEMP, BIG, AVERAGE // variables

 1 COUNT = 0
 2 TOTAL = 0
 3 input TEMP
 4 BIG = TEMP
 5 loop while not(TEMP = 0)
 6 TOTAL = TOTAL + TEMP
 7 COUNT = COUNT + 1
 8 input TEMP
 9 if TEMP > BIG then
10 BIG = TEMP
11 endif
12 end loop
13 AVERAGE = TOTAL / COUNT
14 output AVERAGE, BIG

Copy and complete the following trace table for the data: 15, 7, 23, 9, 0

Line COUNT TOTAL TEMP BIG TEMP # 0 output

1 0

2 0

3 15

4 15

5 true

6

Teacher Support Material - Computer Science © IBO, 4/2/2015 2

Counting Loops (M96 SL P1 Q3)

(a) Consider the algorithm fragment below.

X = 1
loop while X < 6

Y = 1
loop while Y < 5

Y = Y + 1
end loop
output “The product of X and Y is ”, X * Y
output “The values of X and Y are ”, X, Y
X = X + 1

end loop

Complete the trace through the fragment. The first two lines are provided and
your output should be similar to that below:

The product of X and Y is 5
The values of X and Y are 1 5

.

.

.

(b) Consider the algorithm fragment below.

X = 1
loop while X < 6

Y = 1
loop while Y < 6

output “The product of X and Y is ”, X * Y
Y <-- Y + 2

end loop
output “The values of X and Y are ”, X, Y
X = X + 2

end loop

Complete the trace through the fragment. The first line is provided and your
output should be similar to that below:

The product of X and Y is 1
.
.
.

Teacher Support Material - Computer Science © IBO, 4/2/2015 3

Determining Frequencies (M96 SL P2 Q1)

In your school, you must determine the number of students taking various examinations. As
part of the input process, a student enters the code of a subject into a computer. For example, 21
could represent computer science. These are stored in an array and the frequency (number of
times) with which each code occurs is to be determined.

(a) Consider the following subject code data:

DATA: 21 14 25 23 21 21 25 14 16 16 17 21 25 17 21 23 14 25 17

Copy and complete the tables below to show the unique subject codes and their
corresponding frequency. Use the subject code data above.

CODES FREQS

21

(b) Consider the following variables:

CODES single-dimension array of integer values which will eventually contain
 the subject codes without duplications.

(Initialized for a maximum of 750 values.)

FREQS single-dimension array of integer values which will eventually contain
 the frequency of the subject codes.

(Initialized for a maximum of 750 values.)

SIZE Integer variable that indicates the current number of valid entries in
 CODES and FREQS.

CODE Integer variable that contains an input subject code.

FOUND Boolean variable that indicates if the current value in CODE is already
 stored in CODES.

POSITION Integer variable that indicates the position that CODE should be placed
 in the CODES array.

(This question continues on the following page)

Teacher Support Material - Computer Science © IBO, 4/2/2015 4

Determining Frequencies (M96 SL P2 Q1) (cont.)

The algorithm below (FREQUENCIES) uses these variables to compute the subject code
frequencies.

SIZE = 0

input CODE // the input stream is terminated by -99

loop while (SIZE <= 750) and (CODE <> -99)

 SEARCH(CODES, SIZE, CODE, FOUND, POSITION)

 /* CODES, FOUND and POSITION are
 pass-by-reference parameters;
 all others are pass-by-value */

if not FOUND then
. . . .
. . . .
. . . .

 (i) The subalgorithm SEARCH tests if the current subject code (stored in CODE) is
already in array CODES. Explain how the parameters POSITION and FOUND will be
effected by SEARCH if:

- CODE is already in array CODES
- CODE is not already in array CODES.

 (ii) Construct subalgorithm SEARCH.

(iii) Explain how the contents of FREQS and CODES will be
updated by the algorithm FREQUENCIES if:

- CODE is already in array CODES
- CODE is not already in array CODES.

(iv) Complete the algorithm FREQUENCIES.

 (This question continues on the following page)

Teacher Support Material - Computer Science © IBO, 4/2/2015 5

3 Determining Frequencies (M96 SL P2 Q1) (cont.)

A possible solution to (b) (ii)

procedure SEARCH(CODES integer array, SIZE integer,
CODE integer, FOUND boolean,
POSITION integer)

FOUND = false
X = 0
loop while (X < SIZE) and not FOUND

X = X + 1
if CODES[X] = CODE then

FOUND = true
endif

end loop
POSITION = X

endprocedure SEARCH

A possible solution to (b) (iv)

SIZE = 0
input CODE // the input stream is terminated by -99
while (SIZE <= 750) and (CODE <> -99) do

SEARCH(CODES, SIZE, CODE, FOUND, POSITION)
 // CODES, FOUND and POSITION are

 // pass-by-reference parameters; all others
 // are pass-by-value

if not FOUND then
SIZE = SIZE + 1
CODES[SIZE] = CODE
FREQS[SIZE] = 1

else
FREQS[POSITION] = FREQS[POSITION] + 1

end if
endwhile

Teacher Support Material - Computer Science © IBO, 4/2/2015 6

If-then-else Statements (M96 SL P2 Q5)

When evaluating the Boolean operators, and and or, in some circumstances the evaluation of the
entire Boolean expression can be determined by the value of the first operand.

For example, the statement “S1 and S2” is false if S1 is false. Similarly, “S1 or S2” is true if S1 is
true. In both of these cases, the value of S2 is irrelevant.

Rewrite the following algorithm fragments to use this strategy, testing only one operand at a time
(e.g. if S1 then, if not S1 then).

(a) Implement the statement below. No Boolean operators are necessary.

if S1 or S2 then
ACTION1

else
ACTION2

endif

(b) Implement the statement below. The Boolean operator not is required.

if S1 and S2 then
ACTION1

else
ACTION2

endif

A possible solution for (a):

if S1 then
ACTION1

else
if S2 then

ACTION1
else

ACTION2
endif

endif

Two possible solutions for part (b):

if S1 then if not S1 then
if S2 then ACTION2

ACTION1 else
else if not S2 then

ACTION2 ACTION2
endif else

else ACTION1
ACTION2 endif

endif endif

Teacher Support Material - Computer Science © IBO, 4/2/2015 7

5 Dividing and Truncating to Manipulate Single-decimal Digits
(N96 SL P1 Q1)

Consider the procedure below.

 input NUMBER // assume 123 is entered

1 NEWVALUE = 0
2 loop while NUMBER > 0
3 DIGIT = NUMBER - truncate(NUMBER / 10) * 10
4 NEWVALUE = NEWVALUE * 10 + DIGIT
5 NUMBER = truncate(NUMBER / 10)
6 end loop
7 output NEWVALUE

Remember that truncate(769.84) returns 769 , rounding DOWN to the nearest integer.

(a) Copy and complete the following trace table for the call ALTER(123).

Line NUMBER NEWVALUE NUMBER > 0 DIGIT output

123

1 0

2 true

3 3

(b) Describe the purpose of the procedure ALTER.

(c) State the output for NUMBER = -123

(d) Explain the difference if ALTER used a pass-by-reference parameter rather
than a pass-by-value parameter.

Teacher Support Material - Computer Science © IBO, 4/2/2015 8

Nonsense with Absolute Value (N96 SL P1 Q3)

Consider the algorithm fragment below. Remember that abs(- 23.4) returns +23.4 and
abs(1051.0) returns +1051.0.

input NUMBER1
 input NUMBER2

if NUMBER1 >= 0.0 then
if NUMBER1 < 1000.0 then

NUMBER2 <-- 2 * NUMBER1
if NUMBER1 <= 500.0 then

NUMBER1 <-- NUMBER1 / 10.0
endif

else
NUMBER2 <-- 3 * NUMBER1

endif
else

NUMBER2 <-- abs(NUMBER1)
endif

(a) State the values of NUMBER1 and NUMBER2 after this algorithm fragment is evaluated,
 given that the initial value of NUMBER1 is:

 (i) 381.5

 (ii) -21.0

(iii) 1200.0

(b) Complete the following algorithm for the function abs.

function abs(val NUMBER real)
result real

declare ANSWER real

.

.

.

return ANSWER
endfunction abs

Teacher Support Material - Computer Science © IBO, 4/2/2015 9

Calculating Typing Fees (N96 SL P2 Q5)

In order to earn extra money, a student types extended essays for a fee. The amount charged
depends on the number of pages in the document. The student charges:

x 5.00 (of some monetary unit) minimum fee for one to three pages
x 1.50 per page for each page over three pages
x an additional 3.75 if the number of pages exceeds 10.

Assuming that 200 words fit on a single typed page, a 1300 word extended essay would produce a fee
of 11.00. That is, 1300 + 200 = 6.5 actual pages, for which the student charges 7 whole pages. The
calculation is 5.00 (for the first 3 pages) + 1.50 x 4 pages (7 - 3) to produce a fee of 11.00.

(a) Calculate the fees, showing all working, for the following extended essays of length:

 (i) 1000 words

(ii) 2425 words.

(b) Construct the algorithm fragment which a student can use to calculate the fee.

The algorithm fragment must prompt the student to give the number
of words in the extended essay. The desired output will be:

x actual number of pages
x whole number of pages
x typing fee.

Remember that truncate(769.84) returns 769.

The output should be clearly labelled and all variables defined.

Answers: (a)(i) 8.00 (a)(ii) 23.75

(This question continues on the following page)

Teacher Support Material - Computer Science © IBO, 4/2/2015 10

x

Calculate Typing Fees (N96 SL P2 Q5) (cont.)

A possible solution for (b):

input NUMWORDS
TYPING = NUMWORDS / 200
if truncate(TYPING) = TYPING then

PAGES = TYPING
else

PAGES = truncate(TYPING) + 1
end if

FEE <-- 5
if PAGES > 3 then

FEE <-- FEE +(PAGES - 3) * 1.5
end if
if PAGES > 10 then

FEE <-- FEE + 3.75
end if

output “The actual number of pages is ”, TYPING
output “A number of pages to be charged for is ”, PAGES
output “The amount to be paid is ”, FEE

Teacher Support Material - Computer Science © IBO, 4/2/2015 11

Golf Scores in Arrays (M97 SL P1 Q1)

The best weekly scores of golfers at a golf club are stored in two arrays as follows:

 NAME SCORE

Jenkins [1] 82

Zendra [2] 77

Lirmin [3] 78

Jenkins [4] 76

Furniss [5] 81

Jenkins [6] 77

[7] -1

The array subscripts indicate the week of the score. For example, the best score at the club in
week 3 was 78 which was made by Lirmin.

Consider the algorithm below.

LOC = 0
SUM = 0
NUMBER = 0
output “Enter a golfer’s name”
input PERSON
loop while (LOC <> 53) and (SCORE[LOC] <> -1) do

if NAME[LOC] = PERSON then
SUM = SUM + SCORE[LOC]
NUMBER = NUMBER + 1

end if
LOC = LOC + 1

end loop
ANSWER = SUM / NUMBER
output ANSWER

(a) State what should be the dimension of the arrays.

(b) State the sentinel value and in what array it is to be found.

(c) The variable ANSWER has not been declared. State its data type and justify your
answer.

(d) Trace the algorithm with the input data "Jenkins" for the array entries given.

(e) Describe the purpose of the algorithm.

(f) Some inputs will cause the algorithm to fail. Explain when this will happen and
give an outline solution to stop the error.

Teacher Support Material - Computer Science © IBO, 4/2/2015 12

Summing Loop (M97 SL P1 Q3)

The following algorithms are designed to calculate the sum (total) of a series of integers:

 procedure SUM1
declare SUM, VALUE integer

SUM = 0
input VALUE
loop while VALUE > 0

SUM = SUM + VALUE
input VALUE

end loop
output SUM

endprocedure SUM1

 procedure SUM2
declare SUM, VALUE integer

SUM = 0
input VALUE
loop

SUM = SUM + VALUE
input VALUE

while VALUE >= 0
output SUM

endprocedure SUM2

 procedure SUM3
declare SUM, VALUE, LENGTH, COUNT integer

input LENGTH
SUM = 0
loop COUNT from 1 to LENGTH

input VALUE
SUM = SUM + VALUE

end loop
output SUM

endprocedure SUM3

For each algorithm (SUM1, SUM2 and SUM3):

(a) Explain what kind of integers (negative and/or positive) the loops are designed
to accept and what effect they have on the loops.

(b) State how many times the loop is executed.

Teacher Support Material - Computer Science © IBO, 4/2/2015 13

Binary Search (N97 SL P1 Q3)

The following procedure searches for a number.

procedure SEARCH(val MARKS integer array, val MAXLENGTH integer,
 val NUMBER integer)

 // Assume that the array MARKS contains MAXLENGTH elements

FOUND = false
LOWER = 0
LENGTH = MAXLENGTH + 1
loop

MIDDLE = LOWER + (LENGTH - LOWER) div 2
if NUMBER = MARKS[MIDDLE] then

FOUND = true
else

if NUMBER < MARKS[MIDDLE] then
LENGTH = MIDDLE

else
LOWER = MIDDLE

endif
endif

while not FOUND

if FOUND then
output MIDDLE

else
output “Not found”

endif
endprocedure SEARCH

(a) Trace the call SEARCH(GRADES, 11, 24) by means of a trace table. Show
the changes to the variables.

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
GRADES 1 3 7 9 12 13 15 20 24 26 28

(b) State the output of the call SEARCH(GRADES, 7, 24).

(c) There is a problem when searching for the number 21.

 (i) Identify the problem.

(ii) State what can be added to the algorithm in order to solve this
problem and indicate where it must be added.

Teacher Support Material - Computer Science © IBO, 4/2/2015 14

Simulation to Count Fish (N97 SL P2 Q5)

A computer is used to monitor the number of fish passing under a sensor in a lake. The sensor
has a timing device which sends the character “T” to the processor every minute. If a fish is
detected, the sensor sends the character “F” to the processor. At the end of the timing period,
the “T” is immediately followed by an “E”.

A typical data stream could be:

T F T T T F F T F F F F T F T E

This means that the first fish detected was between the first and second minute. Two fish
passed under the sensor between the fourth and fifth minute, etc.

Construct an algorithm that inputs the data from the sensor and produces the following output:

x the number of minutes that the survey was in operation
x the total number of fish that passed under the sensor
x the largest number of fish that passed under the sensor in any one-minute interval.

The data that would be the output, for the above example, would be:

x the survey lasted 7 minutes
x a total of 8 fish passed under the sensor
x the largest number of fish in a one-minute time interval was 4.

(The pseudo-code instruction that reads a character from the SENSOR into the character variable
SIGNAL is:

input(SENSOR, SIGNAL)

(This question continues on the following page)

Teacher Support Material - Computer Science © IBO, 4/2/2015 15

Simulation to Count Fish (N97 SL P2 Q5) (cont.)

A possible solution:

main FISH

FISHCOUNT = 0
MINUTES = 0
MAXFISH = 0
THISFISH = 0

input (SENSOR, SIGNAL)

loop while SIGNAL <> “E”
if SIGNAL = “F” then

FISHCOUNT = FISHCOUNT +1
THISFISH = THISFISH + 1

else
if SIGNAL = “T” then

MINUTES = MINUTES + 1
if THISFISH > MAXFISH then

MAXFISH = THISFISH
endif
THISFISH = 0

endif
endif
input (SENSOR, SIGNAL)

end loop
output “The survey lasted ”, MINUTES, “ minutes”
output “A total of ”, FISHCOUNT, “ fish passed under the

 sensor”
output “The Largest number of fish in a one-minute time

 interval was ”, MAXFISH
endmain FISH

Teacher Support Material - Computer Science © IBO, 4/2/2015 16

Highest Values in a Two-dimensional Array (M96 HL P1 Q10)

The two-dimensional array of real values TEMPS outlined below contains the maximum daily
temperatures over a period of one year.

DAYS
¯

(WEEKS)

[1] [2] . . . [52]
[1]

[2]

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

[7] X

The cell indicated by the X, TEMPS (7, 2), would store the maximum temperature for
Saturday in week 2.

By referring to this array, construct an algorithm that computes the highest and lowest maximum
daily temperatures of the year (that is, the largest and smallest values in the array).

In addition to the temperature, the algorithm should clearly output the week of the year and the
day of the week (specifying Sunday, Monday, etc.) on which these extreme temperatures
occurred. (Assume that day 1 is Sunday, day 2 is Monday, etc.)

Define all variables used. (You may assume that valid real temperatures are already in the array
TEMPS.)

Teacher Support Material - Computer Science © IBO, 4/2/2015 17

(This question continues on following page)14 Highest Values in a Two-
dimensional Array (M96 HL P1 Q10) (cont.)

A possible solution:

HIGH = TEMPS[1,1]
LOW = TEMPS[1,1]
LWEEK = 1
LDAY = 1
HWEEK = 1
HDAY = 1
loop X from 1 to 7

loop Y from 1 to 52 do
if TEMPS[X,Y] > HIGH then

HIGH = TEMPS[X,Y]
HWEEK = Y
HDAY = X

end if
if TEMPS[X,Y] < LOW then

LOW = TEMPS[X,Y]
LWEEK = Y
LDAY = X

end if
end loop

end loop

output “ The highest temperature for the year is ”, HIGH,
“ and it occurred in week ”, HWEEK, “ on a ”

if HDAY = 1 then
output “Sunday”

else if HDAY = 2 then
output “Monday”

else if HDAY = 3 then
.
.

else if HDAY = 7 then
output “Saturday”

end if

output “ The lowest temperature for the year is ”, LOW,
“ and it occurred in week ”, LWEEK, “ on a ”

 if LDAY = 1 then
output “Sunday”

else if LDAY = 2 then
output “Monday”

else if LDAY = 3 then
.
.

else if LDAY = 7 then
output “Saturday”

end if

Teacher Support Material - Computer Science © IBO, 4/2/2015 18

15 Fibonnaci Sequence (recursive) (M96 HL P2 Q4)

The algorithm fragment below generates values that are called the Fibonnaci sequence.

P1 = 1
NEXT = 1
output P1
output NEXT
loop X from 1 to 10

P2 = P1
P1 = NEXT
NEXT = P2 + NEXT
output NEXT

end loop

(a) What are the Fibonnaci numbers generated by this algorithm?

(b) Given the algorithm below (FIBSEQ), construct the recursive subalgorithm for
the function FIBONNACI (used near the end of the algorithm) that will generate the Nth

Fibonnaci number (when N >= 2).

Define and describe all parameters and variables used in the recursive algorithm.

Hint: the nth Fibonnaci number [or FIBONNACI(N)] is given by the
(N - 1)th + the (N - 2)th Fibonnaci number, for N > 2.

main FIBSEQ
declare N, FIB integer

output “Enter the number, n, greater than 2, for
 the nth Fibonnaci number to be generated.”

input N
loop while N <= 2

output “The number, n, must be greater than 2.
 Please re-enter.”

input N
end loop
FIB = FIBONNACI(N)
output “The nth Fibonnaci number is ”, FIB

endmain FIBSEQ

(This question continues on the following page)

Teacher Support Material - Computer Science © IBO, 4/2/2015 19

 (M96 HL P2 Q4) (cont.)

A possible solution for (b):

function FIBONNACI(val N integer)
result integer

if N = 1 then
return 1

else
if N = 2 then

return 1
else

return FIBONNACI(N - 1) + FIBONNACI(N - 2)
endif

end if
endfunction FIBONNACI

Teacher Support Material - Computer Science © IBO, 4/2/2015 20

Binary Search (N96 HL P2 Q1)

(a) To solve a particular computer problem, data has to be stored in sorted order.

If an array is used, a sorted order can be obtained as the data is entered initially,
for example, if the input data is:

Grapefruit, Apple, Banana, Pear, Orange, Grape, Kiwi.

If the array to store them is FRUIT, after the first read it would store:

Grapefruit

After the second read, it would store:

Apple Grapefruit

 (i) Draw the array to show how it would look after every subsequent read.

(ii) Draw and describe a data structure which would not require as
much data rearrangement, when a new item is added, to maintain a sorted order.
Give brief details of its organization.

(b) A binary search can be used to locate a data item in a sorted array of size N. It
does this by comparing the middle item of a list with the required input value. If the
input is equal to the middle item of the list the search stops, otherwise the half of the list
which cannot contain the item is ignored by reassigning the current value for the top or
bottom of the list.

For example, using the final array from (a)(i) above, where N= 7 and the item to
find is Kiwi :

initially BOTTOM is 1 and TOP is 7 (that is, N).

Apple Banana Grape Grapefruit Kiwi Orange Pear

Thus MIDDLE = (TOP + BOTTOM) / 2 = 4

Since the item at location 4 (Grapefruit) is not equal to the input value (Kiwi)
the search does not stop and since Grapefruit is less than Kiwi, the input value cannot
be in the lower half of the list, so bottom is reassigned to MIDDLE + 1 and the search
continues.

 (i) Continue the trace of the binary search, using a suitable layout.

(ii) Construct the algorithm fragment to perform the binary search.
(Remember to give an error message if the item is not found.)

Teacher Support Material - Computer Science © IBO, 4/2/2015 21

(This question continues on the following page)16 Binary Search (N96 HL P2 Q1)
(cont.)

(c) The binary search can be expressed as a recursive routine.

 (i) Explain the term recursion and state one necessary condition required
by any recursive routine.

(ii) A call to a recursive binary search routine when looking in
array FRUIT for item SEEK could be:

 BSEARCH(SEEK, BOTTOM, TOP,FRUIT).

Construct the recursive algorithm fragment that would carry out this
call. No loop is used, instead the routine is used recursively with suitable
parameters.

A possible solution for (b)(ii):

procedure BINSEARCH(val SEEK string, val BOTTOM integer,
 val TOP integer, val FRUIT string array)

 /* Looking for the occurrence of SEEK within FRUIT */
declare MIDDLE integer

repeat
MIDDLE <-- (BOTTOM + TOP) div 2
if FRUIT[MIDDLE] = SEEK then

output “Found”
else

if FRUIT[MIDDLE] > SEEK then
TOP <-- MIDDLE - 1

else
BOTTOM <-- MIDDLE + 1

endif
endif

until (FRUIT[MIDDLE] = SEEK) or (TOP < BOTTOM)

if TOP < BOTTOM then
output “Error”

endif
endprocedure BINSEARCH

Teacher Support Material - Computer Science © IBO, 4/2/2015 22

(This question continues on the following page)16 Binary Search (N96 HL P2 Q1)
(cont.)

A possible solution for (c) (ii):

procedure BSEARCH(val SEEK string, val START integer,
 val FINISH integer, val FRUIT string array)

 /* Looking for the occurrence of SEEK within FRUIT recursively */

declare MIDDLE integer

if FINISH < START then
output “Error”

else
MIDDLE <-- (START + FINISH) div 2
if FRUIT[MIDDLE] = SEEK then

output “Found”
else

if FRUIT[MIDDLE] > SEEK then
BSEARCH(FRUIT, START, MIDDLE - 1)

else
BSEARCH(FRUIT, MIDDLE + 1, FINISH)

endif
endif

endif
endprocedure BSEARCH

Binary Tree (N96 HL P2 Q7)

A binary tree is stored in a dynamic data structure as follows. Each node is given in the format:

Address

node_entry

left_link

right_link

350 380 193

+ / B

327 350 -1

419 257 -1

327 419 287 257

A * C D

-1 193 -1 -1

-1 287 -1 -1

Teacher Support Material - Computer Science © IBO, 4/2/2015 23

(a) State what the values associated with left_link and right_link represent.

(b) Draw the binary tree presented above if the root node is 380.

(This question continues on the following page)17 Binary Tree (N96 HL P2 Q7) (cont.)

(c) A recursive routine is used to traverse this tree. Assume the new type NODE has
been defined as given below.

newtype NODE record
NODE_ENTRY character
LEFT_LINK pointer->NODE
RIGHT_LINK pointer->NODE

 endrecord

procedure TRAVERSE(val VALUE pointer->NODE)
if VALUE->LEFT_LINK # -1 then

TRAVERSE(VALUE->LEFT_LINK]
endif
if VALUE->RIGHT_LINK # -1 then

TRAVERSE(VALUE->RIGHT_LINK)
endif
output VALUE->NODE_ENTRY

endprocedure TRAVERSE

Trace the algorithm with the initial call TRAVERSE(380).

(d) Give the in-order traversal of the tree given in (b).

(e) State the changes needed to be made to the algorithm in (c) to generate an in-
order traversal of a tree.

Summing in a Two-dimensional Array (N97 HL P1 Q10)

Teacher Support Material - Computer Science © IBO, 4/2/2015 24

The two-dimensional array, called GRID, has the following values.

8 16 12 19 4
3 7 15 21 1
2 14 17 5 10
6 13 12 18 9

For example, GRID[3, 2] = 14.

Consider the algorithm fragment below:

1 for ROW <-- 1 upto 4 do
2 for COL <-- 2 upto 5 do
3 if GRID[ROW, COL] < GRID[ROW, COL-1] then
4 GRID[ROW, COL] <-- GRID[ROW, COL-1]
5 endif
6 endfor
7 endfor

(a) Redraw the array and its new contents after tracing the algorithm above.

(b) Construct the algorithm that displays both the average (mean value) of each
column and the overall average.

A possible solution for (b):

procedure AVERAGE(ref GRID integer array [1..4,1..5])

declare ROW, COL, COLSUM, ALLSUM integer
declare COLAVG, ALLAVG real

ALLSUM <-- 0
for COL <-- 1 upto 5 do

COLSUM <-- 0
for ROW <-- 1 upto 4 do

COLSUM <-- COLSUM + GRID[ROW, COL]
ALLSUM <-- ALLSUM + GRID[ROW, COL]

endfor
COLAVG <-- COLSUM / 4
output “In column ”, COL, “ the average is ”, COLAVG

endfor
ALLAVG <-- ALLSUM / 20
output “The overall average is”, ALLAVG

endprocedure AVERAGE

Random Numbers (N97 HL P2 Q1)

One method of generating pseudo-random numbers is to start with two values (seeds), multiply
them together and then extract the middle digits. This value can then be used as a seed to generate
the next value.

For example, if 85 and 65 are used as the seeds, the following is obtained:

Iteration Seed 1 Seed 2 Product Pseudo-random
Number

Teacher Support Material - Computer Science © IBO, 4/2/2015 25

1 85 65 5525 52
2 65 52 3380 38
3 52 - - -

(a) Complete the table above to show up to iteration 6.

(b) Construct the algorithm PSEUD that will calculate and display the first six
pseudo-random numbers. You may assume that there is a function EXTRACT which
returns the middle two digits from a four digit number. For example,
EXTRACT(5525) would return 52.

(c) Construct the algorithm for EXTRACT as used in part (b).
Remember that truncate(43.8) returns 43.

(d) Explain what would happen if the product was 2008.

(e) Another way to generate pseudo-random numbers is to use modulo arithmetic.
For example, in a sequence of values the new number is calculated by multiplying the
last generated random value by a set number and using the remainder after dividing by
another set value.

For example, with an initial seed of 4, a multiplier of 3, and a modulus of 7, the
following is obtained:

Iteration Pseudo-random
Number (Rn)

3*Rn Rn+1 = (3*Rn) mod 7

1 4 12 5
2 5 15 1
3 1 3 3

 (i) Construct the recursive algorithm PSEUD2(ITER, NUM)
which outputs any value in the sequence. For example, the call PSEUD2(2,
4) would output 5, where the first parameter represents the sequence number
required and the second parameter represents the seed.

 (ii) Construct PSEUD2 as an iterative, rather than a recursive, algorithm.

(iii) State one advantage and one disadvantage of recursive routines
when compared to iterative routines.

(This question continues on the following page)19 Random Numbers (N96 HL P2 Q1)
(cont.)

A possible solution for (b):

main PSEUD
declare SEED1, SEED2, X, PRODUCT, RANDOM integer

SEED1 <-- 85
SEED2 <-- 65
for X <-- 1 upto 6 do

PRODUCT <-- SEED1 * SEED2

Teacher Support Material - Computer Science © IBO, 4/2/2015 26

RANDOM <-- EXTRACT(PRODUCT)
output RANDOM
SEED1 <-- SEED2
SEED2 <-- RANDOM

endfor
endmain PSEUD

A possible solution for (c):

function EXTRACT(val VALUE integer)
result integer

declare HUN, LEFT integer

VALUE <-- truncate(VALUE / 10)
HUN <-- truncate(VALUE / 100)
HUN <-- HUN * 100
LEFT <-- VALUE - HUN
return LEFT

endfunction EXTRACT

A possible solution for (e) (i):

procedure PSEUD2(val ITER integer,val NUM integer)

if ITER = 1 then
output NUM

else
PSEUD2(ITER - 1, (3 * NUM) mod 7)

endif
endprocedure PSEUD2

(This question continues on the following page)19 Random Numbers (N96 HL P2 Q1)
(cont.)

A possible solution for (e) (ii):

procedure PSEUD2(val ITER integer,val NUM integer)
declare RES, TIMES integer

RES <-- NUM
if ITER > 1 then

for TIMES <-- 2 upto ITER do
RES <-- RES * 3 mod 7

Teacher Support Material - Computer Science © IBO, 4/2/2015 27

endfor
endif
output RES

Teacher Support Material - Computer Science © IBO, 4/2/2015 28

	Algorithms from IB Examinations
	1
	Summing and Averaging (M96 SL P1 Q1)
	2 Counting Loops (M96 SL P1 Q3)
	(a) Consider the algorithm fragment below.
	3 Determining Frequencies (M96 SL P2 Q1)
	(This question continues on the following page)
	3 Determining Frequencies (M96 SL P2 Q1) (cont.)
	(This question continues on the following page)
	3 Determining Frequencies (M96 SL P2 Q1) (cont.)
	4 If-then-else Statements (M96 SL P2 Q5)
	When evaluating the Boolean operators, and and or, in some circumstances the evaluation of the entire Boolean expression can be determined by the value of the first operand.
	5 Dividing and Truncating to Manipulate Single-decimal Digits (N96 SL P1 Q1)
	6 Nonsense with Absolute Value (N96 SL P1 Q3)
	7 Calculating Typing Fees (N96 SL P2 Q5)
	(This question continues on the following page)
	(7 Calculate Typing Fees (N96 SL P2 Q5) (cont.)
	8 Golf Scores in Arrays (M97 SL P1 Q1)
	9 Summing Loop (M97 SL P1 Q3)
	12 Binary Search (N97 SL P1 Q3)
	13 Simulation to Count Fish (N97 SL P2 Q5)
	(This question continues on the following page)
	13 Simulation to Count Fish (N97 SL P2 Q5) (cont.)
	14 Highest Values in a Two-dimensional Array (M96 HL P1 Q10)
	(This question continues on following page)14 Highest Values in a Two-dimensional Array (M96 HL P1 Q10) (cont.)
	15 Fibonnaci Sequence (recursive) (M96 HL P2 Q4)
	(This question continues on the following page)
	(M96 HL P2 Q4) (cont.)
	16 Binary Search (N96 HL P2 Q1)
	(This question continues on the following page)16 Binary Search (N96 HL P2 Q1) (cont.)
	(This question continues on the following page)16 Binary Search (N96 HL P2 Q1) (cont.)
	17 Binary Tree (N96 HL P2 Q7)
	(This question continues on the following page)17 Binary Tree (N96 HL P2 Q7) (cont.)
	18 Summing in a Two-dimensional Array (N97 HL P1 Q10)
	19 Random Numbers (N97 HL P2 Q1)
	(This question continues on the following page)19 Random Numbers (N96 HL P2 Q1) (cont.)
	(This question continues on the following page)19 Random Numbers (N96 HL P2 Q1) (cont.)

