
Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 1/21

File Organization - Syllabus Section 7
Summary

File Structure Name Storage Details Access Method (searching)

Sequential (serial) file Ordered (sorted)
or unordered

records

Sequential Access

Parially Indexed
file

Ordered
Sequential access to index, followed
by direct access to the first record in
the group, then sequential search to

find the desired record

Fully Indexed
file

Unordered Sequential access to the index,
followed by direct access to the

correct record

Direct Access
file

Either ordered or
unordered

A calculation (hash) provides the
location of a record, followed by

direct access to the record

Zonker's Fabulous File Fable (File Organization Examples)
Zonker loves computers. He knows everything about PCs and the Internet.
He decides to "leverage" his knowledge and earn some money. He starts a
dot-com business selling secret information about celebrities (movie stars,
singers, etc).

He figures he can collect the information free from on-line newspapers and
fan web-sites, and whenever he needs more info he'll just make it up,
because nobody will notice the difference anyway (similar to some news
services). He'll also provide a chat-room, so all the fans can trade more
secret info with each other, and he can steal that information and sell it, too.

The success of the business will depend more on selling advertising than actually selling the info,
although he will charge a small fee for the customers. He'll use e-mail to remind customers every week
that they should check in and read the latest gossip. He reckons he can spend a year building up the
business, sell out for a million dollars, and have an easy life.

This is a story about the development of a customer database. In all the examples, the file stores the
Name of the user, the E-mail address, and a password. The procedures are written as basic examples –
they do not function perfectly, and contain very little error-trapping code.

*** Warning - the Java code in the examples has not been tested. It is preliminary "pseudocode". ***
*** It may contain minor syntax errors, but hopefully contains no major conceptual errors. ***

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 2/21

Stage 1 : Serial (unsorted) Text File

To get started, Zonker gives free subscriptions to all his friends (about 20 people). He asks them for their
E-mail addresses and lets them choose a password. "How should I store the customer data?" he wonders.
Then he remembers the programmers' secret weapon – ** NOTEPAD ** to the rescue! He fires up
Notepad, types in his data, and saves it in a text file named CUSTOMERS.TXT, like this:

Allen Allstar AAllstar@hotmail.com AAAAAA

 Tommy Lee Tunes TomTune27@aol.com a1b2c3xxx

 Carla Charles TooCool@yahoo.com sekret

 Bobby Baker BB@hotmail.com BeeBee
It doesn't take long to type in the data - he just types it out of his head, so it isn't in order (unsorted).

Zonker needs a program to automate the log-in process on his web-site. He wants to use a Java program
to verify the user-names and passwords when the users log in. He starts writing his Java program, but
realizes that it's going to be pretty difficult to parse the strings in the text file (take them apart into the
separate pieces: name, e-mail, password), because all the names and e-mail addresses are all different
lengths. He can't rely on the blank spaces as delimiters, because some people have 2 names while others
have 3. He considers the following algorithm:

Find the @ sign in the string

Search backward for the first blank space before the @

Take all the stuff before the blank as the full name

Search forward from the @ sign for a blank space

Take all the stuff after the blank as the password

Another possibility is to use /slashes/ as delimiters, like this:

Tommy Lee Tunes/TomTune27@aol.com/a1b2c3xxx

But then he realizes that only the computer is ever going to read the file, so he will make it convenient
by writing one field on each line of the file, like this:

 Allen Allstar
 AAllstar@hotmail.com
 AAAAAA
 Tommy Lee Tunes
 TomTune27@aol.com
 a1b2c3xxx
 Carla Charles
 TooCool@yahoo.com
 sekret

 Bob Baker
 BB@hotmail.com
 BeeBee

Now each record is written on three lines as three separate fields, and the sequential search (linear

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 3/21

search) algorithm is easy to program. This method searches for a user by name, and returns the password
if the user is found - otherwise it returns and empty String.

public String findPassword(String target)
{
 String name = "";
 String email = "";
 String password = "";
 String answer = "";

 BufferedReader customers =
 new BufferedReader(new FileReader("customers"));

 while (customers.ready())
 {
 name = customers.readLine();
 email = customers.readLine();
 password = customers.readLine();

 if (name == target)
 { answer = password; }

 }
 customers.close();
 return answer;

}

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 4/21

Stage 2 : Sequential (sorted) Text File

After a couple weeks, news has spread around the school about Zonker's celebrity gossip site. Lots more
people have signed up, and he has over a hundred names in the file. The new customers paid 5 Euros
each for lifetime memberships - the original customers got in for free. One of the new members is angry
because she paid her membership fee but can't log-in. Zonker has debugged the program and is convinced
there is nothing wrong. He prints out all the data to check through it, thinking maybe he left out a line
(field) in one of the entries - this would mess up the program, which always reads 3 fields for each record.
 There are no lines missing, but he notices the same name is in the file twice, in two different places.
 Apparently the user has been typing in one password, but the program keeps finding the other password
and rejecting her. Zonker realizes that this problem would have been easier to see if the names were
sorted. Then the duplicate name would be easy to notice.

How to sort the file? He could program a bubble-sort, but the separate fields make that messy. He tries to
do it by cutting and pasting in Notepad. It only takes about 20 minutes to do. He realizes that he can
easily insert new records in the right place in the file, so it will always be sorted. He decides to keep the
file in sorted order all the time, by using Notepad to insert new records in the correct order..

Now that the file is sorted, he can speed up the FIND procedure by having it "stop early" when it does not
find a name. It only requires one change in the code:

while (customers.ready() && (target.compareTo(name)>=0))

As soon as the TARGET is "smaller" than the NAME in the file (target precedes name), the program can
stop because the rest of the names will be even bigger (alphabetically). This works because the file is
sorted. On the average, the FIND routine now reads half the file instead of the entire file. Unfortunately
this improvement has little effect on the access time for his site, because there aren't very many names in
the file anyway. The time required by FIND is now 5 milliseconds instead of 10 milliseconds - not a
noticeable difference.

Now that the file is sorted, it is also easy to write a procedure to automatically detect duplicate names:

public void showDuplicates()
{
 String name = "";
 String email = "";
 String password = "";
 BufferedReader customers =
 new BufferedReader(new FileReader("customers"));

 String previous = "";

 while (customers.ready())
 {
 name = customers.readLine();
 email = customers.readLine();
 password = customers.readLine();

 if (name == previous)
 { output(name); }

 }
 customers.close();
}

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 5/21

The customer database continues to grow exponentially - doubling every week. After it gets to 2000
names, Zonker is finding it time-consuming to put the new names into the file in the right place - he keeps
searching up and down to find the right place. He has a clever idea how to speed things up. He puts a
notebook next to the keyboard, searches once through the file, and writes down the approximate position
where the B's start, where C starts, etc, and ends up with a list like this:
 DATA FILE
 PARTIAL INDEX

comment Letter Position (pages)

The numbers tell
how many times

Zonker pressed the
Page-Down key to

get to the letter.

A

B

C

D
...

T
...

Z

1

5

7

12
...

57
...

79

This seemed like a good idea at the time, and did speed up the data-entry, but every couple days Zonker
must scribble out the numbers in the index and write them new. He realizes he can write a simple
procedure to automatically print out the index. His procedure will count the number of records until each
letter comes. He can convert this to an approximate number of "pages" by dividing by 10, as there are 10
records on the screen at one time.

public void showDuplicates()
{
 String name = "";
 String email = "";
 String password = "";
 BufferedReader customers =
 new BufferedReader(new FileReader("customers"));
 char previous = ' ';
 int count = 0;
 while (customers.ready())
 {
 count = count + 1;
 name = customers.readLine();
 email = customers.readLine();
 password = customers.readLine();
 char firstLetter = name.charAt(0);
 if (firstLetter != previous)
 { output(firstLetter + ":" + (count / 10)); }
 previous = firstLetter;
 }
 customers.close();
}

 Allen Allstar
 AAllstar@hotmail.com
 AAAAAA

 Bob Baker
 BB@hotmail.com
 BeeBee

 Carla Charles
 TooCool@yahoo.com
 sekret

 Tommy Lee Tunes
 TomTune27@aol.com
 a1b2c3xxx

 Zztop

mailto:AAllstar@hotmail.com
mailto:TomTune27@aol.com
mailto:TooCool@yahoo.com
mailto:BB@hotmail.com

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 6/21

 Stage 4 : Merge (sorted + sorted ==> sorted)

It doesn't take very many weeks until Zonker starts hating Notepad! In fact, just after 2500 records,
Notepad won't open the file any more - it is over 64 KB, and Notepad can't open such big files.
 Windows suggests using WordPad to open the file. Zonker doesn't know what WordPad is, but he
opens the file, types in some names, and saves the result. The next day, he gets a few phone calls from
users saying they can't log-in. Oh, wow, they are really mad (especially his girl-friend), because Zonker
had promised a super-duper-extra-surprise tidbit about a big-shot movie star. Zonker tries to log-in and
finds out he can't log-in either. He opens the data-file in WordPad and it looks fine. But when he runs the
FIND program in debug mode, he sees the program is getting a lot of garbage from the file instead of
names and passwords. After a 2 hour wait on the My-Cross-Oft help line, Zonker figures out that
WordPad has saved his data-file in MS-Word .DOC format, so the text-file isn't a text-file any more.
 But don't worry about the 2500 names - he has a backup. The backup is only a week old, so he only loses
1000 names (ouch!). After a week pounding on the keyboard he's back to where he started, and decides to
do the right thing and write a proper data-processing program to take care of his data.

Can't the computer automatically put the new records in the right place in the list, without Zonker messing
around in the file? Unfortunately, there is no way for a program to insert new data in the middle of a
text-file. But it could do the following (pseudo-code description):

Input a new name, e-mail, and password

Search for the name which should be just before the new name.

During the search, write all the data into a new file

Write the new data record into the new file

Continue reading the old file and copy the rest of the data to the new file

Erase (kill) the old file

Rename the new file to have the same name as the old file

This is called "merging" the new data into the file. This is pretty straightforward. But Zonker decides to
take this one step further. He can make a sorted list of new data. It should be possible to merge this new
file into the old file in one single pass, like shuffling two piles of cards together. Here is the idea:

 At each point in the algorithm:

 the first elements in the two lists are compared

 the smaller of the two is removed from it's list
 and written into the new file

 this continues until one list is empty

 then the rest of the other list is copied into the new file

 Zonker writes the merge procedure and everything is better, at least for a few weeks.

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 7/21

Stage 5a : Partially Indexed (text-file - oops?)

As the number of users continues to double each week, Zonker is starting to get worried about the size of
the data-file - not huge problem (yet!) The access time is proportional to the size of the file - O(n). So
if the access time for 100 records is 5 ms, then 1000 records is 50 ms, 10 000 is 500 ms, etc. At 20 000
records, the access time is 1 sec. But this means at 200 000 it will be 10 seconds, and that starts to be
worrisome. He's not so much worried about the customers who are logging in - but the slow look-ups
might keep his server so busy that it doesn't keep up with the customer's other (Web) requests.

Zonker remembers using his manual version of an index, writing page numbers for each letter. He
decides this might also speed up his program, so he creates an indexed-sequential access routine. It
works like this (pseudo-code):

Get the first letter of the TARGET name

Find this letter in the INDEX

Read the corresponding position (record number)

Go directly to that position in the file

Start reading sequentially until the name is found,
 or until the next letter of the alphabet is reached

That sounds good - should be 26 times faster right off the bat, as the sequential search must only look
through 1 section of the file (a single starting letter). If the file gets even bigger, just make the index
bigger, by recording the positions of Aa, Ab, Ac, Ad, ... This cuts the search area by a factor of 26 again.

Zonker starts writing the program, then realizes that it is not possible to jump to a specific position in a
text-file. Text-files are strictly sequential access - you must read the 1st record, then the 2nd, etc in
order.

........... So

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 8/21

Stage 5b : Converting to Direct-Access (random access – that's better)

To implement a partially indexed file (indexed-sequential access), Zonker needs two data-structures:

1. Index - contains letters (A,B,C...) and the starting position of each letter section
This can be a text-file, as it is small and can be searched sequentially.
Or it could be stored in arrays.

2. Data - the actual customer data must be stored in a direct-access (random access) file, so it is
possible to jump to any location in the file, e.g. the S section when searching for Smith.

The search algorithm is implemented as stated above in 5a.

Now it's really the end of using Notepad and Wordpad. Direct-access can only function with fixed-
length records. Every field has a fixed length. For example:

class customer
{
 String name = ""; // 30 characters
 String email = ""; // 40 characters
 String password = ""; // 20 characters
}

The reading and writing methods must be careful to ensure that every record is exactly the same size as
every other record. If UTF Strings are used, they need 2 extra bytes each, so the total size of the record
would be 30 + 2 + 40 + 2 + 20 + 2 = 96 bytes. Zonker was never very good at math, so he decides to
"round this off" to 100 bytes. That means each record will occupy 100 bytes, and the records will start at
positions like 0 , 100 , 200 , 300 , ...

Each NAME must be exactly 30 characters long (+2), so short names will be padded with blanks to fill
up the field. This would be a big pain to do by hand, typing all those extra spaces. Even worse, counting
all those extra spaces is unreliable. If you get it wrong, the data ends up looking like this:

Albert Einstein AE //The NAME field was too short
instein@Hotmailisdeadfinally.co.uk // so the email address is missing
 passwordwithspaces // the first two letters AE

The NAME field above is too small, so the first two letters of the EMAIL field get included as part of the
name, so both the EMAIL address and the name are actually wrong. Manual editing of fixed-length
records is definitely a bad idea!

Why are fixed-length records required anyway? The only way to "jump" into the middle of a file is to
calculate a position, in bytes, then seek to that position. To find record #500, calculate 100*500 =
50000, then seek to byte #50000. This doesn't work in normal text files, where each line of data could be
any length, so the starting positions of records is unpredictable.

Here is a method to force a string to have the correct length. It may not be super efficient, but that could
be improved later if necessary.

public String forceLength(String data,int size)
{
 while (data.length() < size) { data = data + " "; }
 if (data.length() > size) { data = data.substring(0,size); }
 return data;
}

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 9/21

Zonker doesn't want to fix the original text file by hand, so he writes a conversion utility to read the text
file and create a new, random-access data file:

public void convertToRandom()
{
 BufferedReader customers =
 new BufferedReader(new FileReader("customers"));
 RandomAccessFile ranCustomers = new RandomAccessFile("ranCustomers");

 Customer cust = new Customer(); // see Customer class above

 int record = 0;
 while(customers.ready())
 {
 cust.name = customers.readLine();
 cust.email = customers.readLine();
 cust.password = customers.readLine();
 ranCustomers.seek(record*100);

 ranCustomers.writeUTF(forceLength(cust.name,30));
 ranCustomers.writeUTF(forceLength(cust.email,40));
 ranCustomers.writeUTF(forceLength(cust.password,20));
 record = record + 1;
 }
 customers.close();
 ranCustomers.close();
}

Now Zonker needs to create the INDEX, with POINTERS into the random-access data file. This is
pretty similar to his original PRINTINDEX algorithm, but this time he wants the results stored in an
array. He plans to run this procedure once each day, then keep the arrays in main memory for fast
access. The INDEX and POINTER arrays need to be global, so they can be used by other procedures
later.

char[] index = new char[100];
long[] pointers = new long[100];
public void makeIndex()
{
 char targetLetter;
 int pos = 0;
 for (targetLetter = 'A'; targetLetter <= 'Z'; targetLetter++)
 {
 RandomAccessFile ranFile = new RandomAccessFile("ranCustomers");
 long maxRecord = ranFile.length() / 100;
 int rec = -1;
 char firstLetter = ' ';
 while (firstLetter < targetLetter && rec < maxRecord)
 {
 rec = rec + 1;
 ranFile.seek(100*rec);
 String name = ranFile.readUTF();
 firstLetter = name.charAt(0);
 }
 ranFile.close();
 index[pos] = targetLetter;
 pointers[pos] = rec;
 pos = pos + 1;
 }
}

Zonker is an amazing programmer – 8 hours and 3 pizzas later, he's finished! and Finally

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 10/21

Stage 5c : Partially Indexed Access (yeah!!)

Zonker takes a break to think about how to write the access routine – the one which searches for a NAME
using the algorithm from 5a (above). This sounds tricky. While he is lying there under the tanning lamp
thinking about this problem, he realizes he still needs to keep the records sorted, or at least grouped in
their first-letter groups. He will need a procedure to insert new records into the middle of the file. Rather
than rewriting his merge procedure, he decides to contract out this job to an eager IB Computer Science
student, who works cheap – wait, no, even better, he can get the IB student to do it as part of their Internal
Assessment project, for free! Solved that problem!

Now he can get on to the important part – making the log-in procedure to look up names and passwords.
With the random-access-data-file and index structures created, Zonker is ready to finish the access
routine. The first part is easy – finding the first letter of the name in the INDEX array:

public long getPointer(String target)
{
 for (int p = 0; p < 26; p = p + 1)
 {
 if (index[p] == target.charAt(0))
 {
 return p;
 }
 }
 return -1;
}

Now the program needs to jump to the position indicated by getPointer. In Java the command is:

ranFile.seek(pointers(getPointer(targetName)));

Here is the rest of the search algorithm. It is pretty similar to the original findPassword method above,
but it uses getPointer to decide where to start searching:

public String getPassword(String targetName)
{
 String password = "";
 long pos = getPosition(targetName);
 Customer cust = new Customer();
 RandomAccessFile ranFile = new RandomAccessFile("ranCustomers");

 while (pos < ranFile.length())
 {
 ranFile.seek(pos);
 cust.name = ranFile.readUTF();
 cust.email = ranFile.readUTF();
 cust.password = ranFile.readUTF();

 if (targetName.equals(cust.name))
 {
 password = cust.password;
 }
 pos = pos + 100;
 }
 ranFile.close();
 return password;
}

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 11/21

The log-in routine now looks like this:

public void login()
{
 String username = "";
 String password = "";
 int count = 0;
 boolean okay = false;
 while (count < 3 && !okay)
 {
 username = input("Type your user name");
 password = input("Type your password");
 if (password.equals(getPassword(username)))
 { startWebSite(); }
 else
 { count = count+1; }
 if (count >= 3)
 {
 recordHackingAttempt();
 shutdown();
 }
 }
}

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 12/21

Stage 6a : Binary Search (good and bad)

As the size of the ranCustomers file increases further (now a half million records, thanks to a mention in
a CNN news story), the search times are getting longer and longer, even with the partially-indexed
retrieval. Zonker bought a faster server, but that only made things twice as fast (1 second wait instead of
2). He thinks about rewriting the index routines to make 2-letter indexes Aa, Ab,Ac, etc. This should cut
the time by a factor of 26. But that sounds messy, and he heard about a binary search method which is
supposed to be super fast – O(log n). He downloaded a binary search routine from the web and rewrote
it to work with his data. The routine is recursive – it calls itself. It assumes the file has already been
opened. The basic idea (in pseudocode) is as follows:

At the beginning, start = 0 and end = maximum record in the file
Calculate the middle of the file
Get the name from the middle position
If the target is the same as the middle pos name
 then quit and return the position (that means found)
Otherwise
 if target comes after the middle, then
 set start = middle + 1
 leave end unchanged
 go back and calculate the middle again and continue
 if target comes before the middle, then
 set end = middle - 1
 leave start unchanged
 go back and calculate the middle again and continue
If end and middle come together (equal),
 then it is hopeless to continue, so report "not found" (pos = -1)

The binary search only works as long as the data file is sorted. That's fine if he is searching for a NAME.
But sometimes the users forget their NAME because they are actually using a phony name (Keyboard
King or something like that). When this happens, the user can log-in using their EMAIL address and
password. Or they can request the NAME and PASSWORD be sent to their EMAIL address. Either way,
they need to type their EMAIL address and the computer must search for the EMAIL address in the data
file.

The EMAIL search must be sequential, because the EMAIL addresses are not sorted – only the NAMES
are sorted. Zonker cannot use a binary search for EMAIL addresses. This is very slow. Fortunately, it
doesn't happen very often.

 To solve the EMAIL search problem, ZONKER decides to keep two copies of the data-file – one is
sorted by NAME, the other sorted by EMAIL. Then both NAME and EMAIL searches can use the binary
search method. But this means that two copies of the data-file must be maintained, and with a half-
million new users each week, this is a major problem. The only rational approach seems to be keeping
one file, and then resorting it each day to produce the second copy.

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 13/21

Stage 6c : Re-Sorting (ouch!)

How fast is the sorting process? Zonker wrote a bubble-sort routine and tested it on 1000 records. It
took 0.1 seconds to sort the NAMES, and another 0.1 seconds to resort it in EMAIL order. Not bad, he
thinks. Unfortunately, the efficiency of a bubble sort is O(n^2). This means that doubling the length of
the list will multiply the time by 4, with the following disastrous behaviour:

Size of list
n

Sorting time
in seconds

1000 0.1
2000 0.4
4000 1.6
8000 6.4
16000 25.6
32000 102.4
64000 409.6
128000 1638.4
256000 6553.6
512000 7.2 hours !!!

It doesn't look good for using a bubble sort to sort the data-file - it will take almost an entire working
day!! At first Zonker thought he would only need to run the sorting routine once a day, in the morning,
for a couple minutes. But it looks like that won't work.

A quick sort is faster - efficiency O(n log n), where log means log base 2. So it behaves like this:

Size of list
n n log n

Sorting time
(theoretical)

n log n / 1024 * 0.1 sec
2^10 1024*10 =

10240
0.1

2^11 2048*11 =
22528

0.22

2^12 49152 0.48
2^13 106496 1.04
2^14 491520 2.24
2^15 1048576 4.8
2^16 2228224 10.24
2^17 4718592 21.76
2^18 4718592 46.08

2^19 = 512000 9961472 97.28 sec (1.6 min)

This is more like Zonker wanted – he can resort the file each day, in just 1.6 minutes. But try as he may,
he doesn't get the quick-sort to work. Just then, Zonker gets an offer of 100,000 Euros to sell his
business. He decides to sell out, take the money, and go to college. Now someone else can worry about
taking care of this huge data-file. He wasn't really that interested in programming anyway.

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 14/21

Stage 7 : Fully-Indexed (multiple indexes, ISAM)

The new owners of Zonker's web-site and data-base is a company named MarketSoft. They are more
ambitious than Zonker, and they have lots of competent programmers working for them.

MarketSoft makes money by collecting e-mail lists and personal data, then selling these lists to companies
who send spam to millions of e-mail accounts every day. The spam operation only works effectively if
the advertising is targeted – e-mails are not sent out at random, but sent to addresses where the user is
likely to be interested in the product. The first job for MarketSoft is to collect a lot of personal data from
each of Zonker's customers.

MarketSoft sends e-mails to all of Zonker's subscribers to tell them the company has been sold.
Customers will be permitted to keep their memberships (for free) if they fill out a long questionnaire with
lots of personal information – age, hobbies, profession, etc. Otherwise, they will need to pay a higher
membership fee. The customers read the e-mail, and most figure they might as well send in their personal
data if they can keep their accounts open at no extra cost. So MarketSoft gets lots and lots of new data,
including the country where each user lives - the new data must be recorded in a new data-file with a
much larger record structure.

Now there are many different kinds of searches that need to be performed, but the file can only be kept
sorted according to one field (normally the name). If all the searches are going to be sequential, things
could get messy and slow as the data-base continues to grow.

The solution is to maintain multiple indexes. There is one single data-file, plus a separate index file for
each field which needs to be searched. This only works if each index is a full-index – it contains an entry
for each record in the file, even if their are duplicate entries. It might look something like this:Data

 File Email Index Country Index

 ** this is still a random access data-file, **
 ** but the data records have been abbreviated **
 ** with /slashes/ for simplicity **

Since the data file is normally quite large, with very large records (several kilobytes each) the "overhead"
of having many extra index files is not a significant disadvantage.

It is not actually necessary to keep the file sorted by NAME – instead, a NAME INDEX file can be
created, and the INDEX file is kept sorted. It is still possible to use a binary search, because the search
will occur in the INDEX file, not in the data file. Once the NAME is found, the rest of the data can be
retrieved by following the pointer to the correct position in the data-file. Further, a binary search can be
performed on any index file.

Position Data (Name/Email/Country) **
1 Al Anders / aa@fis.edu / DE
2 Barbie Brooks/king@jj.com/US
3 Carl Cook / dude@ab.co.uk/ UK
4 Debbie Duke/ duke@ibm.com/ US
5 Ed Elliott / wow@blah.com / JA
6 Fern Fool / fool@ok.com / IR
7 Greg Gun / gg@iq.de / DE
8 Heidi Hahn / cow@news.com / CH

Data Pos
CH 8
DE 1
DE 7
IR 6
JA 5
UK 3
US 2
US 4

Data Pos
aa@fis.edu 1
cow@news.com 8
dude@ab.co.uk 3
duke@ibm.com 4
fool@ok.com 6
gg@iq.de 7
king@jj.com 2
wow@blah.com 5

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 15/21

Now maintaining the data-file is much simpler, because new records are simply added at the end of the
file. Well, it isn't quite that simple. When a new record is added, a new entry must also be added to
every index file, and these entries must be inserted. So it isn't totally simple, but it's basically a very
efficient data-structure concept.

The basic concept for accessing (searching for something) is:

Get the TARGET string
Choose the appropriate INDEX
Perform a binary search in the INDEX to find the TARGET,
 returning the POSITION of the desired record
If found, open the DATA-FILE, jump to record POSITION,
 and retrieve the desired record

The very popular ISAM technology (Indexed-Sequential-Access-Method) is based on this concept. It is a
bit more complicated, and was developed thoroughly and marketed by IBM many in the 1980s. At a
serious company like MarketSoft, the programmers probably start with a basic, complete, general DBMS
(Data Base Management System) which implements ISAM automatically – examples are MS Access,
Oracle, and various SQL systems (including MySQL). They start with a complete system, and modify it
to do exactly what they need. They don't actually sit around writing code for ISAM operations – this has
already been done enough times, and the code has been optimized during many years of use and revision.

So what happened to Zonker? He went off to college, but couldn't give up programming – he was
addicted. He turned into a real hacker – the good kind, who stays awake all night trying to write very
clever programs, not bothering anyone and certainly not breaking into other people's servers. He wasted
too much time hacking and missed too many classes, and eventually dropped out of college. He got a job
at MarketSoft where he got paid for hacking (programming, that is). His best hack was a new database
access method. Poor old Zonker never could spell very well. He wanted to name his method "Hacking",
but he typed that into a word-processor and the spell-check changed it to "Hashing", and now we are stuck
with that name. So, what's hashing? Just when you thought you were finished with these notes, there's
still ONE MORE PAGE!!!

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 16/21

####### Hashing #######

- Hash Code -

Use a key-field in the data to calculate a hash-code -
the position in the array where the data will be stored.

- MOD Wrap around -

The hash-code is often a very large number, so this
would require an enormous list. By calculating
Hashcode MOD ListSize, a position can be chosen in a
smaller list. For this to work well, the ListSize should
be a prime number - e.g. 101 instead of 100.

- Collision -

Several different records might calculate the same hash-
code. But they cannot all sit in the same place in the
list. This is commonly resolved by searching for the
next free position. Collisions are reduced by using a
sparse array - many empty spaces, e.g. 50%.

- Unique Keys -

Collisions can be reduced by using a unique key field,
where all key-field values only occur once - for one
data item. Unique keys can be generated by combining
two fields - for example Name + Birthdate. However,
there will still be collisions if mod is used.

- Access - To retrieve a value:

§ Calculate the hash-code

§ Look in that position - if it's the right data, finished

§ If it is not the right data, then do a linear search
starting at the next position, until the item is found.

= Speed = O(constant)

Hashing is used in large data files to speed up access.
If you are lucky, the data is retrieved directly from the
hash-code calculation, in 1 step. More common is one
hash calculation followed by a few steps in a linear
search. This is something like O(5) (5 search steps) – so
the search time is constant, and does not increase as
the list grows.

Data Item

 "Smith, Joe" , 17 , "Germany" , "15.08.1982"

Key Field = First 4 letters of Name = "Smit"
 à use 4 ASCII bytes as 32-bit integer
 = [83][109][105][116]

Hash Calculation

 "S" "m" "i" "t"
 83 * 256^3 + 109*256^2 + 105*256 + 116
 à 1399679348 = Hash Code
 1399679348 mod 101 à 37 = Position

Position
"Smith, Joe" lands in position [37]. If another
"Smith" gets recorded, it goes into position [38]

Using this algorithm, and a list of length 101,
(mod 101) we get few collisions in 20 names:

Adam = 1097097581 --> 29
Bobo = 1114595951 --> 48
Carl = 1130459756 --> 86
Dave = 1147237989 --> 98
Eddy = 1164207225 --> 21
Frank = 1181901166 --> 75
Gina = 1198091873 --> 78
Hellen = 1214606444 --> 38
Irene = 1232233838 --> 3
Jackie = 1247896427 --> 17
Karen = 1264677477 --> 18
Lara = 1281454689 --> 19
Mildred= 1298754660 --> 3 ==> 4
Norman = 1315926637 --> 61
Owen = 1333224814 --> 69
Petra = 1348826226 --> 11
Quincy = 1366649198 --> 18 ==> 20
Ruth = 1383429224 --> 5
Susie = 1400206185 --> 58
Tony = 1416588921 --> 89

Mildred collides with Irene and gets moved to
position 4. Quincy collides with Karen, but
position 19 is already occupied by Lara, so Quincy
lands in position 20.

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 17/21

== ADT and FILES for MASTERY MARKS ==

Zonker's fable describes several different data file storage structures. A RandomAccessFile containing records
is only one of these possibilities. But it is a good way to for an IB student to score mastery marks.
An HL student must demonstrate mastery of 10 items chosen from 15:

- 5 SL techniques (1 mark)
- Direct Access Files (direct access) : inserting, deleting, searching (3 marks)
- Linked-lists / trees : inserting, deleting, searching, handling errors (4 marks)
- Object-Oriented Programming : Polymorphism, Encapsulation, Inheritance (3 marks)
- Others (difficult) : merging two lists, recursion, parse a text file, hierarchical data (4 marks)

A typical HL dossier contains a RandomAccessFile (3 marks) and an ADT (perhaps a Linked-List for 3-4 marks),
use 5 SL techniques (1 mark) and score 3 marks in OO programming. This is just enough.

Without RandomAccessFiles and ADTs, it is impossible to score all 10 marks. Each missing mark reduces the
final grade by 10%. So it is RECOMMENDED that the dossier implements a RandomAccessFile and an ADT.

Construction of an indexed-data-file or hashed file have the potential of demonstrating many of these skills in a
single package. This is simpler for both the student and the examiner. For example, the index can be constructed
and stored in memory as a linked-list or tree, while the data is permanently stored in a random-access file.

Careful! The syllabus requires that records are directly added to the data-file, and that means inserting them. So
although an index should be the primary access method, it would not be sufficient to only add records at the end of
the file. Program an insert function which inserts a record into a specific position in the file, in addition to the
normal adding at the end. Program a sorting routine which reorganizes the file into a specific sorted order – say
by name – this “sort” of thing is called a primary key sort.

It may seem silly or wasteful to have two different access methods on the same data-file, until you think of it in
slightly different terms. Normally software has an end-user(s), but also there are support technicians for
maintenance. The support staff probably uses low-level tools to fix technical problems in the software – e.g.
physically re-ordering, adding, or removing records by direct access. The end-user has different needs, and wants
to use high-level tools to accomplish their work – e.g. printing lists of various subsets of the data in various
orders. The end user does not want to worry about what is going on inside the program.

This all makes sense if there are two sets of interfaces/commands/tools available:

 End-user tools AND Maintenance tools

Although the end-user is your main target, there are usually also technical support people involved. The
redundancy (duplication) of having two different access methods in the two different tool sets makes your software
more robust (reliable).

Merging is one of the mastery items. Don't ignore this one – it is fairly easy to program and scores 1 point just
like the more difficult deleting functions. Merging means:
(1) Start with two sorted lists
(2) Merge them together one record at a time into a third list
(3) The third list must also be sorted

Caution! Whatever you put into a class module, you will only receive mastery credit if that function is actually
used for a real purpose in the finished program. Thus, it is not sufficient to simply create a merge function – it
must also be “used for some non-trivial purpose” in the program. It must be used correctly and efficiently, but this
does not require that it is the most efficient method possible. Thus, you might be merging just a few records into a
big file, and this could be done more efficiently by inserting, but that's okay.

Before starting your program, design data-structures, algorithms and classes to ensure mastery factors work!

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 18/21

Data Structures (B1)

A data-structure is a collection of data, not a single primitive type. So a single number is not a data-structure -
it is simply data. A String can be a data-structure if it contains several pieces of data, for example:
"Name/email/phone". An array is a data-structure - it contains a list of data. Text files and RandomAccessFiles
are data structures. Other examples are stacks, queues, and linked-lists. If a data-structure contains other data-
structures, it is called hierarchical composite data-structure - for example, an array of records or a record
containing an array.

Data-structures consist of data (the data items) and structure (organization). Before starting a program, you
should clearly specify the needed data-structures. This requires some thought and decisions.

For the IB IA dossier (project), you are required to describe and illustrate your data-structures. This must clearly
explain the organization as well as the type(s) of data. The descriptions should use standard Computer Science
vocabulary. Thus, you should say "an array of Strings" rather than "a list of names". The illustration requires
diagrams - an array must be shown using boxes, a linked list with nodes and pointers, etc. Both the description and
the illustration must contain sample data. The sample data should cover a range of values - e.g. small numbers
and large numbers, long Strings and empty Strings, etc. The sample data should be realistic - e.g. ages between 1
and 100 rather than random numbers.

If there are several similar structures, such as an array of names of basketball players and an array of names of
soccer players, it is not necessary to draw pictures of both - you can say something like "the soccer list is just like
the basketball list, but with the names of different students."

The maximum 4 marks are awarded if:

The student has discussed and clearly illustrated all of the data structures/types to be used to solve the
problem, and provided sample data for all of them.

Algorithms (B2)

Algorithms refer to methods that will accomplish specific tasks. Typical examples include:

• Search for a name in an array
• Sort a RandomAccessFile
• Count the number of words in a sentence
• Parse a String to find key-words
• Reverse the order of the nodes in a linked-list

Notice that each example above is connected to a data-structure. For your project, you must describe all the
algorithms that your program will implement. You are not required to describe very simple, common algorithms
like inputting and capitalizing a String. For the most part, you can limit your descriptions to the algorithms that
operate on data-structures. For standard algorithms, a simple statement of the name of the algorithm is sufficient -
e.g. "use a Bubble-Sort to put the array in alphabetical order". For non-standard algorithms, you must provide a
description of the process. For example, Zonker needed to convert the text-file to a RandomAccessFile. The Java
code above is more detailed than required. This could be written in pseudo-code as follows:

Open the text-file
Create a RandomAccessFile
Repeat
 Read name,email,password from the text file
 Fix the lengths of the Strings:
 name = 30 chars, email = 40 chars, password = 20 chars
 Seek the next record position in the RandomAccessFile
 WriteUTF strings for each of name, email, password
until the end of the text-file

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 19/21

The maximum 4 marks for algorithms are awarded if:

The algorithms discussed are sufficiently logical, detailed, and well documented to be used to create the
solution in Java.

That doesn't mean the algorithms are totally correct - you can leave out many small details, especially extensive
error-checking and user-interface details. It is really the important automation algorithms that must be
described. If you are going to implement a fully-indexed data-file, like Zonker, you need to describe the
algorithms that save data and retrieve data, as well as the algorithms for creating all the indexes.

As a rule-of-thumb, algorithms must be described if they:
• involve loops
• affect data-structures
• involve complex logic (lots of if.. commands)
• implement automated processes

The simplest way to describe the algorithms is through pseudo-code. There are no "rules" about how to write
"correct" pseudo-code. It is basically "sloppy Java" - Java written without worrying about syntax. But that doesn't
mean you can invent things that don't exist. So you cannot just say "I will implement the Java command that
validates, sorts, and saves the array." That simply doesn't exist.

A warning about Java commands - some of the commands in java.util.* are considered "cheating". For example,
java.util contains a LinkedList class, but students will not receive ADT mastery marks for using this class. You
must create your own linked-list ADT from scratch. There is no expectation that you write a "complete" linked-
list class as good as the one in java.util. The requirement of making a "complete" ADT means that it contains all
the algorithms necessary for your project, not all the algorithms that a truly universal linked-list would have.

Modular Organization = Classes (B3)

The term module is generic and applies to Object Oriented languages like Java as well as older high-level
structured languages like Fortran. But we are using Java, and in Java a module is usually a class.

You are expected to organize your project into classes that encapsulate data-structures with their corresponding
algorithms. If you create an ADT, you should definitely do this as a single class (which may contain or extend
sub-classes). It should have a thoroughly specified API (application programming interface) consisting of the
constructors and other methods that can be used by an application programmer.

This is an organizational task. It requires the programmer to decide which modules (classes) will be required or
permitted to execute algorithms that modify the contents of data-structures. For example, in Zonker's application
the log-in program can read the password file to check whether a password is correct. But it should not be able to
change a password or delete a user. That is the responsibility of some other module - probably in the system-
maintenance or administrative functions.

A sensible approach for this task is:
1. Make a list of data-structures
2. Make a list of algorithms for each data-structure
3. Collect data-structures with algorithms into logical classes, using sensible encapsulation
4. Identify responsibilities and access

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 20/21

Suggested Process for Stage B

1. Read and think about user stories and goals from Stage A

2. Identify NOUNS and create corresponding data-items and organize these into data-structures
Think about data-types, records and files.
Example:
 nouns : user name password email
 Data-structures: user-record = name/email/password (3 Strings)
 user-file = file contains user-records

3. Make a fairly complete list of all the data and data-structures for your program
Check that every noun (data item) has a place in this list.

4. Again read and think about user stories and goals from Stage A

5. Identify VERBS and create names for methods and algorithms required for your program.
Think about standard algorithms like sorting and searching.
When you record an algorithm, always identify the data-structure that will be involved.
At this stage the description of the algorithm is not very detailed - just write your initial ideas.
Example:
 verbs: log-in look-up validate deny-access
 Algorithms: login
 input user name and password
 check whether these match those in the customer file
 then either start the program or reject the log-in attempt

6. Distribute algorithms and data-structures into modules (boxes) , putting things together that belong together.
Make up names for the boxes - these are class names.

7. Look over your modules, and try to extract ideas for classes that will work effectively -
here you are trying to minimize work by maximizing reuse and improve reliability by enforcing
encapsulation to improve cohesion and prevent side-effects due to inappropriate access.

8. Organize your classes, data-structures and algorithms in a hierarchical outline (example below).Discuss
this first draft with the teacher, then make changes to the outline as the teacher suggested.

9. Return to your list of data-structures and fill in the details:
- Draw a picture of each data-structure including one example of sample data for every data item.
- For lists (files and arrays), provide at least 4 pieces of sample data
- Where possible, write rules or ranges for valid data items
- Describe the organizational structure of lists and files. Use standard vocabulary when possible -
 for example, "sequential file" or "random-access-file"
- Outline structural integrity rules such as "file is always sorted" or "array must end with 'xxx' "

10.Return to your list of algorithms, and fill in the details in the algorithm pseudocode, e.g:
 login
 input user name
 input password
 search in customers file for the user name
 if not found, quit
 if password == filePassword
 start program
 else
 try again - after 3 tries, reject the user

Zonkers Fabulous File Fable by Dave Mulkey, Germany 2005 21/21

11.Create a diagram(s) showing module interactions - that is, classes that access each other. This is a diagram
similar to what BlueJ produces for a project. This represents the same thing as collaboration in CRC cards. If
possible, this should not be a tangled mess of arrows. If there are too many arrows (making a messy picture)
you may need to reorganize your classes into a more hierarchical system.

You may prefer to stick to an outline showing the hierarchical structure, but this only makes sense if there are
very few connections (e.g. arrows) between classes that are separated in the hierarchy. Your outline from #8 is
probably adequate, but leave out the details of the algorithms - just provide meaningful names. The outline is
easier, but the picture with arrows looks nice. DON'T draw arrows in an outline. If you need to connect
classes, just use the names.

12.Once you have finished the classes outline, data-structure diagrams, and algorithm pseudo-code, print
them and give the to the teacher to be graded. Due Date: Monday 28 Nov

Sample Docs Stage B – First Draft

== Data Structures ========

-- Document Server --

• Documents = a set of documents (.html, .rtf) stored in a folder on a server
 It may be useful to have a LIST of the NAMES of these documents stored in a file somewhere (?)

• Vocabulary List Files = for each reading document, a matching vocab list containing Vocab records
- Vocab Record = word, definition

• Master Dictionary File = complete merged list of all the vocabulary files, to be used for backup
 reference if the user clicks on a word that is NOT in the current vocab list

-- Student Data Files --

• Accounts File = file of Account records for each student
- Account Record = student-name, password

• Assignments File = one big file containing Assignment records for all students
- Assignment Record = student-name, document-name, accessed flag (on after document accessed)

• Reading Sessions File = one big file containing ReadingSession records for all students
- ReadingSession Record = doc-name , student-name, date, starting-time , ending-time,
 list of vocabulary clicks

-- Internal Data-Structures --

• Words Clicked List = an array containing the words that were clicked by the student - could be an array
 if they click the same word twice, it is recorded again

• Current Vocab = a Vocab List (ADT), to be loaded from the file when a document loads.
 When a student clicks a word, it is looked-up here. This should be sorted,
 so an efficient look-up can be performed.

• Dictionary = a Vocab List (ADT), loaded from the Dictionary file.
 If student clicks a word that is not found in the Current Vocab Array, then the program
 will search in the Dictionary array before going to a web-site.

-- ADT's --

• Vocab List = a list of words and definitions, providing fast look-ups (e.g. binary search or hashing

	Data Pos
	CH 8
	DE 1
	DE 7
	IR 6
	JA 5
	UK 3
	US 2
	US 4
	Data Pos
	aa@fis.edu 1
	cow@news.com 8
	dude@ab.co.uk 3
	duke@ibm.com 4
	fool@ok.com 6
	gg@iq.de 7
	king@jj.com 2
	wow@blah.com 5
	File Organization - Syllabus Section 7
	Summary
	File Structure Name
	Storage Details
	Access Method (searching)
	
Parially Indexed
file
	
Fully Indexed
file
	
Direct Access
file

	Zonker's Fabulous File Fable (File Organization Examples)
	Stage 1 : Serial (unsorted) Text File
	Stage 2 : Sequential (sorted) Text File
	 Stage 4 : Merge (sorted + sorted ==> sorted)
	Stage 5a : Partially Indexed (text-file - oops?)
	Stage 5b : Converting to Direct-Access (random access – that's better)
	Stage 5c : Partially Indexed Access (yeah!!)
	Stage 6a : Binary Search (good and bad)
	Stage 6c : Re-Sorting (ouch!)
	Sorting time
	
n log n
	Sorting time

	Stage 7 : Fully-Indexed (multiple indexes, ISAM)

	####### Hashing #######
	Data Structures (B1)
	Algorithms (B2)
	Modular Organization = Classes (B3)
	Suggested Process for Stage B
	Sample Docs Stage B – First Draft

