
1

A Brief History of Programming

Programs, Languages, and Java

! The earliest programmable
computing machine was
conceived by Charles
Babbage (1792-1871).
The first programmer was
the Countess Ada
Lovelace, daughter of the
poet Byron.. She designed
punch card programs for
Babbage's Analytical
Engine, which was never
built.

2

A Brief History of Programming

Programs, Languages, and Java

! One of the earliest electronic computers, ENIAC, was built
and used back in the 40's.

! Originally, ENIAC had to be programmed by physically
connecting different parts of it together. The “program” was
literally “hard-wired”. Reprogramming the machine
required physically rewiring it. This was very time
consuming.

! A man named John von Neumann, sometimes called “the
father of computing”, set up ENIAC so that it would retrieve
“instructions” from its memory and then execute. This was
the first time both the program and the data were stored in
memory.

! ENIAC ran much slower in this configuration, but took only
a small fraction of the time to program, since the program
could now be fed in just like the data, on punched tape.

! This approach is so flexible that it has been adopted ever
since. Virtually every computer built today uses what we
call a “von Neumann” architecture.

3

How Programs are Stored and Executed

Programs, Languages, and Java

! A CPU is capable executing a fixed set of instructions on data
in its registers. Registers are tiny, fast memories contained
right inside the CPU that can alter their contents based on the
kind of instruction.

! There are only a handful of registers in a CPU. Registers in
current machines process data in chunks of 32 bits. What
people typically mean by a “32-bit processor” is that its
registers process 32 bit chunks of data.

! The chunks of data processed by a CPU are often called
words, and size of the chunks is the word-length of the CPU.

! The instructions in a CPU typically act on one or two registers.
 Some examples are:

< load a value from primary memory into a register
< store the value from a register into primary memory
< add the contents of one register to another
< compare the contents of two registers

! A program, at its simplest level, is a sequence of instructions
for the CPU. Programs and the data they process are both
stored in the primary memory.

! The CPU runs a program by fetching an instruction from the
primary memory, executing the instruction, and then fetching
the next instruction.

! Some instructions tell the CPU to “jump” to other parts of the
program, sometimes depending on a value in the register. This
allows the program to act differently depending on the data.

4

First and Second Generation Languages

Programs, Languages, and Java

! The instructions used in computers are indicated by a set of
bits (e.g. a byte can represent 256 different instructions).

! Early programs simply consisted a series of values fed
directly into the memory. This is called machine code.

! Machine code is often entered as a set of hexadecimal (base
16) numbers. Each hexadecimal number represents 4 bits.

! Machine codes are also known as first generation
programming languages.

! Machine code is very difficult for humans to understand. It
was not long before people replaced the numeric values of
instructions with mnemonics like “ADD” (addition) and
“CMP” (compare). Programs were written that would
translate these mnemonics in to the machine codes which
could then be fed into the computer. These coding systems
were known as assembly languages and fall into the category
of second generation programming languages.

! Assembly languages made it easier for programmers to get
things done, but there were still serious drawbacks.

! Certain operations were frequently performed but required a
long set of instructions.

! Programmers also had to keep track of where everything was
stored in memory and make sure that operations were not
performed in incorrect sequences.

5

Third Generation Languages

Programs, Languages, and Java

! The next leap in programming came in 1957 with
FORTRAN. This language introduced the basic ideas that
make up almost every language created since then.
FORTRAN provided labels for memory locations and the
task of deciding where in memory the things were stored was
removed from the programmer. They simply referred to the
labels.

! Furthermore, certain operations such a repetition and
jumping around in the program were encoded in simpler
terms. Now, the programmer could use one or two keywords
for what had before been a long sequence of assembler
instructions.

! This is a key difference. In assembly languages, there was a
direct relationship between the assembler code and the
machine code. In FORTRAN, a few simple keywords and
labels was turned into a much larger collection of machine
codes.

! FORTRAN formed the start of the third generation
programming languages or 3GL’s.

! Other examples of 3GL’s include C, Pascal, COBOL, and
many, many more.

! The question of whether any fourth generation languages
exist today is open to debate. Some definitions for 4GL’s
have been proposed, but it’s not obvious that any distinctly
more abstract level has been well defined.

6

Compilers

Programs, Languages, and Java

! Programming begins by writing a program in a programming
language. This form of program is called source code.

! Computers are not capable of executing source code directly.
 It must be translated into machine code first.

! This translation is performed by a piece of software known
as the compiler.

Machine
Code

Source
Code Compiler

! Compilers handle the problem of where data is stored and
what CPU instructions need to be executed.

! Compilers can detect errors in the syntax of the program. The
syntax refers to the structure of the language, much like
grammar in human languages.

! They can also provide warnings about source code that is
likely to cause problems or be incorrect.

! However, the compiler can’t detect logical errors. It is very
easy to write a meaningless program that does nothing and
have a compiler cheerfully accept it.

7

The Software Crisis

Programs, Languages, and Java

! The development of third generation programming
languages allowed the creation of larger systems than were
feasible before. This was not because earlier languages were
limited, but simply because the task of managing larger
problems was easier.

! However, as larger and larger systems were constructed, it
was found that early languages like FORTRAN and COBOL
were being used to build large programs which became
unmanageable. This problem became known as the software
crisis

! The reasons were:
< hard to find errors in the program
< hard to keep track of how it worked
< hard to understand the interactions between different parts
< hard for more than one person to work on the same program

! The problem was the programs were disorganized. They
consisted of long sequence of source code with lots of
jumping around.

8

Structured Programming

Programs, Languages, and Java

! The solution that people came up with was to break programs
down into smaller chunks, and to make sure that it was easy
to understand how those chunks were entered and exited.

! The idea of breaking programs down is known as modularity.
 The general idea was to create chunks of program with
names so that they could dealt with separately. These chunks
could call each other in order to achieve their goals.

! Using calls and a few standard structures for doing things like
repeating sections of code meant that programmers did not
need to jump around in the code as much, and that when one
did, it was easy to understand what would happen.

! The approach is known as structured programming, and was
first introduced in languages such as Algol and Pascal
although elements of it pervade most modern languages..

! In structured programming, pieces of data are moved around
from one part of the program to the other. Data is kept in
distinct chunks, rather than all in one place, which further
simplifies the problem of writing large programs.

9

Modular Programming

Programs, Languages, and Java

! While structured programming solved a lot of problems, large
systems were still difficult to build and maintain.

! Additionally, people were rewriting pieces of programs that
already existed elsewhere. This was clearly wasteful. People
wanted reusability.

! The idea of modules (or libraries) came into existence in
languages such as Modula. Modules are even larger chunks
of structured code that can call each other and be combined.

! Modules can also be written in different languages and
combined later.

! A new piece of software is needed to link modules together.
It is called a linker. After the compiler compiles each
module, a linker takes all of the compiled modules and
combines them together to make the final executable
program.

! With modules, one need only see and learn the sections one
wants and not worry about the rest. This is the concept of
information hiding.

10

Object-Oriented Programming

Programs, Languages, and Java

! Much of the software in the world today has been built using
modular programming. However, even modular
programming has encountered problems.

! The chief problem with earlier approaches was that data had
to flow around through many sections of code. A lot of work
was required to make sure that the data was not incorrectly
processed by any part of the system. It was hard to
understand the interactions of different parts of the system.

! Eventually, the concept of object-oriented programming
(OOP) emerged. In OOP, one breaks the system down into
a set of objects. Each object contains some data needed for
the problem. The objects also have all appropriate
processing attached to them.

! This means that every object encapsulates both the state and
the dynamic for part of the problem.

! Because the object controls both the state and the dynamics,
it can control how its state is changed, and ensure that
invalid processing does not occur. This minimizes the risk
of corrupting the data and means that if a failure occurs, we
need only look at the objects involved to see where the fault
occurs.

! Objects limit what can be done to them by exposing only
part of their state and dynamic to other objects. The rest is
hidden inside the object.

! This has another useful consequence. It means we can
change the internals of an object without affecting the rest of
the system.

11

Object-Oriented Programming

Programs, Languages, and Java

! Another nice feature of OOP is that if we need to add more
to the system, we simply create new objects. We don’t
necessarily need to change the existing objects.

! Because objects are nicely encapsulated, we can use them in
other systems without worrying about the details of their
implementation. This gives us good reusability.

! You can think of an object like a little machine. It has a
number of mechanisms inside that you can’t see and some
buttons and dials on the outside that you can push and turn to
make the machine do things. Some lights on the outside can
tell you something about what’s going on inside.

! With this view from the outside, you can safely worry only
about what the machine is doing, not how it is doing it.

! The diagram below provides an abstract view of an object.

State

State

State

State

Dynamic

Dynamic

Dynamic

Dynamic
Dynamic

Dynamic

12

Java: Object-Oriented and more

Programs, Languages, and Java

! Smalltalk was the first widely acknowledged object-oriented
language. It uses an extremely object-oriented point of view
and is not used in many large-scale, practical applications,
although it is used for building prototypes of systems. Other
languages, such as C++, have found wider usage in the
industry.

! In the early 90's, the company, Sun Microsystems, wanted to
create a language for embedded devices, such as cellular
telephones. Such systems need very reliable and predictable
software.

! Embedded systems also use a wide variety of hardware, so
Sun needed a language that would perform consistently over
a wide variety of platforms.

! A platform is a hardware/software environment in which
programs are run. We frequently refer to running software
on a platform.

! The ability to run on a wide variety of different platforms is
called platform-independence.

! The language they started to create was called Oak.
However, Oak failed to attract the attention they wanted. So,
in order to promote the language, and to cash in on the
Internet boom, they repackaged Oak as “the language for the
Internet”, and called it Java. By getting big Internet players
like Netscape and Microsoft to add Java capabilities to their
web browsers, Java became an overnight success.

! But what is it that sets Java apart from other languages?

13

Java: Platform Independence

Programs, Languages, and Java

! One of Sun’s main goals with Oak and Java was platform
independence. Many different CPU’s are used in different
computers, and they do not all have the same instruction set.
So Sun decided that this language would run on what was
called a virtual machine.

! A virtual machine is a piece of software that acts like a CPU.
 It has an instruction set, just like an ordinary CPU. The
difference is that, since it is a piece of software, we can make
it behave the same on every machine. If we do this, then
when we want to run Java programs on another machine, we
only need to write a new version of the virtual machine for
that machine. All of our other programs can stay the same.

! The Java Virtual Machine (JVM) is said to interpret the Java
bytecode that forms a Java program.

Java
Source
Code

Java
BytecodeJava Compiler

Real CPU

Virtual Machine

Java Bytecode

14

Java: Other Features

Programs, Languages, and Java

! Java was supposed to be powerful and highly reliable. It
achieved this using the following features:

< simplicity of the actual language
< consistency of the actual language
< uses object-oriented paradigm
< runtime checking for certain common errors
< exception-based error handling
< built-in support for multi-threading
< automatic garbage-collection of unused memory

! However, there are some costs to using Java.
< using a virtual machine slows down execution
< runtime error checking slows down execution
< automatic garbage-collection can be hard to control
< must use the object-oriented paradigm
< a fairly large runtime environment must be ported to the target

platform

! For the Internet, Java needed graphical capabilities. The
many different operating systems on the Internet all use
different windowing systems to draw graphics on the screen.
Sun attempted (rather poorly at first) to create a platform
independent windowing system called the Abstract
Windowing Toolkit (AWT).

! Sun has provided many other application programming
interfaces (API’s) for the Java platform to handle
networking, security, distributed systems, sound, 3-D
graphics, internet services, and much more.

15

Summary Of Important Terms and Concepts

Programs, Languages, and Java

! the “von Neumann” architecture

! machine code

! registers

! programs

! first, second, and third generation languages

! source code

! compilers

! syntax

! the “software crisis”

! structured programming

! modular programming

! information hiding

! objects and object-oriented programming (OOP)

! encapsulation

! reusability

! Java and its features

! platforms and platform-independence

! virtual machines and the Java Virtual Machine (JVM)

! Java bytecodes

! application programming inteface (API)

