
IB Computer Science Sample Dossier Project – by Dave Mulkey, (c) 2005, Germany (1/28)

Foreword

Disclaimer

This document contains sample documentation for Stage A of the
IB Comp Sci IA Program Dossier. It was prepared by an IB teacher
as a sample for his students. This sample has no "official" status,
and was not sanctioned by the IBO.

My Intentions

I will show this sample to my students so they have a clearer idea of
what is expected. I hope this example meets the expectations of
the examiners, as put forth in the Guide and Teacher Support
Materials. My intention was to produce an example that would
receive full marks in Stage A (4+4+4), but I cannot guarantee this.

Prototype

Criterion A3 states that "The prototype need not be functional …
The intent is to show the user how the system is expected to
operate…" I found it useful to create a functional prototype of a
key part of the system. This very clearly demonstrated to the user
some of the key advantages of a computer solution. It made the
discussions with the users much easier – I didn't need to work so
hard to explain what would happen.

Feasibility

The functional prototype has the second advantage that it
demonstrates the feasibility of the intended solution, specifically:
- that HTML documents can be displayed correctly
- that the user can easily mark a word by double-clicking

I encourage my students to confront some of the tricky
programming issues early-on, so they don't spend lots of time
planning a solution that they cannot actually implement later.

UML Use Case vs XP User Stories

Extreme Programming (XP) has User Stories – these are similar
to Use Cases in UML. I imagine some students will use UML for
their designs. I find UML rather daunting for high school students,
so I won't be using it. The XP user stories seem to fulfill the
"systematic method" required in Criterion A1 #4. They also connect
easily to user interviews, which helps in some other criteria. My
version of user stories is not "standard", but I have not found a
clear statement about a "standard" way to present these.

Formatting

The formatting is purposely compact, in landscape layout, to make
it easier to read on a computer monitor. I don't recommend that
students use this layout – it is rather tricky and they needn't waste
time trying to duplicate this format. In my experience, IB Comp Sci
dossiers waste a lot of paper due to white space, but this is
perfectly acceptable. I do encourage students to print their
program listings in landscape mode to accommodate long lines.

Length

I think there are too many pages here for section A, but I could not
see a good way to reduce the volume. A few pages are devoted to
very large full-screen captures – student projects probably won't
contain such large screen captures. And the appendix pages don't
count. My intended solution for the problem is perhaps a bit more
comprehensive than a typical student's work - a more limited
solution would reduce the pages. But I was trying to illustrate what
a highly competent student would do to achieve maximum marks. I
imagine some students will indeed produce this much (or more).

Permission

I grant permission for IB Computer Science teachers to reproduce
this document for educational use with their students. This work
must not to be published or used commercially.

IB Computer Science Sample Dossier Project – by Dave Mulkey, (c) 2005, Germany (2/28)

 ESL Reading Assistant with Vocabulary Support

 Investigation and Analysis

The Problem (Overview)

Our international school has many students receiving ESL
(English as a Second Language) support and instruction. The
students receive direct instruction to improve their English, but
at the same time they are enrolled in normal classes like
Science, Math, and History. They must read standard English
language textbooks and worksheets – this is difficult as the
students are not yet proficient English speakers.

Existing System

The ESL teachers help the students with their reading.
Sometimes they sit with an ESL student and answer
questions to help them understand unfamiliar words and
complex sentences.

The teachers compile vocabulary lists for specific reading
assignments. For example, if all the students in grade 8 read
a worksheet about the heart, an ESL teacher may take the
worksheet and write a supplementary vocabulary list for that
worksheet. This is especially useful if the same worksheet
can be re-used each year.

The students also use standard dictionaries (paper) and
electronic translating-dictionaries for their own language. The
ESL programme currently has many Korean students, so they
use an English-Korean translating dictionary.

Of course the students also receive help from their classroom
teachers. One of the humanities teachers cooperates closely
with Mr S. to build up the stockpile of custom vocabulary for
re-used reading assignments. Some teachers have regular
(weekly) vocabulary lists and quizzes.

Collection of materials – both reading assignments and
vocabulary supplements – is managed by individual teachers.
There is no central collection of materials – e.g. no database
or central repository of materials.

One of the ESL teachers – Mr S. – has an extensive collection
of vocabulary sheets. These were word-processed and
collected electronically. When a student needs to read a
worksheet, the teacher prints the matching vocabulary notes
and gives them to the student.

Some students use web-sites for translation and reference.
These are attractive because they are free and reasonably
quick - but they are inconvenient as the students don't always
have a computer available when they are doing their reading.
Although our school has many computers available (and most
students have computers and Internet connections at home),
students are often working in classrooms with no access to
computers.

Despite availability of computers, most of the reading
materials are distributed on paper. There is relatively little use
of web-sites and other electronic distribution systems.

IB Computer Science Sample Dossier Project – by Dave Mulkey, (c) 2005, Germany (3/28)

Sample Data

Here are some samples (shortened) of reading assignments and
vocabulary lists:

Simultaneous Inequalities (grade 9 mathematics)

Businessman face the problem of making choices under restrictions. In
a real business, there are lots and lots of variables, and lots and lots of
restrictions. We will look at a very simple version, with only 2
variables and 2 restrictions.

Problem
A delivery truck delivers two types of cargo: TV sets and computers..

Each TV set weighs 25 kg, and a computer weighs 10 kg.
The maximum weight of cargo is 500 kg.

Each TV set costs 500 EU, and each computer costs 800 EU.
The maximum value of cargo must be under 25000 EU, for insurance
purposes.

A TV can be sold for 150 EU profit, and a computer earns 200 EU
profit.

The question is: what is the best number of TVs and computers to
deliver, in order to earn the maximum profit?
 …..
Vocabulary:

simultaneous
when two things happen at the same time –
in math, when two equations need answers at the "same time"

variable
a letter that represents an unknown number
…..

What Did Columbus and his Men Eat? (grade 8 Humanities)

Columbus sailed from Palos de la Frontera on 3 August, 1492. Let us look
at the first voyage and the victuals embarked on the three vessels, the
Nina, Pinta and Santa Maria. The first problem was to obtain supplies of
food, wine and water. At the Canary islands they picked up fresh water,
wood and the famous Gomera goat cheese.

Columbus' first voyage had the best victuals (and enough to last a year),
not the case in his other voyages.

The menu for Spanish seamen consisted of water, vinegar, wine, olive oil,
molasses, cheese, honey, raisins, rice, garlic, almonds, sea biscuits
(hardtack), dry legumes such as chickpeas, lentils, beans, salted and
barreled sardines, anchovies, dry salt cod and pickled or salted meats (beef
and pork), salted flour. The olive oil and perhaps olives were stored in
earthenware jugs. All other provisions were stored in wooden casks which,
according to some reports, were of cheap and faulty construction
permitting the preserving brine to leak out of the meat casks and moisture
to invade the casks of dry provisions. All were stored in the hold, the driest
section of which was normally reserved for those casks carrying dry
provisions. A cooper (barrel maker) was responsible for keeping the casks
tight, an almost impossible challenge.

Food, mostly boiled, was served in a large communal wooden bowl. It
consisted of poorly cooked meat with bones in it, the sailors attacking it
with fervor, picking it with their fingers as they had no forks or spoons.
 ….

Vocabulary:

victuals – food
molasses – a sweep syrup made from sugar cane
legumes - beans
pickled – preserved by soaking in liquid (e.g. vinegar and salt)
 …..

IB Computer Science Sample Dossier Project – by Dave Mulkey, (c) 2005, Germany (4/28)

Another sample reading assignment and vocabulary list
(grade 7 science) – copied from http://www.howstuffworks.com

http://www.howstuffworks.com

IB Computer Science Sample Dossier Project – by Dave Mulkey, (c) 2005, Germany (5/28)

Quantity of Data

The system has two kinds of data:
• reading assignments
• vocabulary lists

The reading assignments comprise roughly 1 page per day per
subject, or roughly 800 pages per year for the 4 "major" subjects –
Math, Science, Humanities, English. This amount exists for each of
4 grades (6-9), so a total of approximately 3000 pages. The
majority of the reading assignments are in textbooks, so conversion
to electronic format would be difficult – a scanner might make this
possible. Something like 20% of the reading is worksheets that
already exist in electronic form.

Not every reading assignment requires a custom vocabulary sheet.
Some sheets already exist – the ESL teachers would like to
continue creating more of these. Something like 5% of the reading
material might have vocabulary sheets.

The total storage requirement would be for a total of several
thousand pages of reading assignments, plus several hundred
pages of vocabulary supplements.

IB Computer Science Sample Dossier Project – by Dave Mulkey, (c) 2005, Germany (6/28)

Initial Ideas from the Intended User

Various informal conversations with Mr S led to the idea for
this project. Mr S has various wishes:
• easily and quickly increase the vocabulary support

materials for the ESL students
• make it easier for ESL students to do their reading and use

the vocabulary materials
• store documents centrally (and electronically) for easy

retrieval and management
• share documents easily and effectively with colleagues
• automate some tasks like typing vocabulary lists

Initial System Design

This initial design incorporates the ideas from Mr S.

Feasibility Prototype

After preliminary discussions with Mr S, I decided it would be
best to show him a prototype before engaging in more
detailed discussions. He liked the idea of the students
retrieving documents from a server, reading them on the
screen, and getting automatic vocabulary help by clicking on
an unfamiliar word, so these ideas formed the basis for the
prototype program.

I was anxious to create a functional prototype to prove the
feasibility of creating the Reading Helper, so that it responds
with help when the student clicks on a word. If this were not
actually possible, the whole concept wouldn't make much
sense.

Sample output from the prototype is shown below. This is
similar to the presentation made to Mr S. The prototype was
written in Java – a listing of the program is included in the
appendix.

SERVER
Reading

Documents
+

Vocabulary
Files

ESL Student
 Reading Helper

 Doc

 to
Read

Vocab
Help

Teacher
 Vocabulary List
 Writing Tool

Reading
 Doc New

Vocab
Entry

Teacher
 Manage Documents
Store reading documents
on the server.

IB Computer Science Sample Dossier Project – by Dave Mulkey, (c) 2005, Germany (7/28)

The user chooses a file (using [File]), and it displays on the left.
The entire vocabulary list appears automatically on the right.

IB Computer Science Sample Dossier Project – by Dave Mulkey, (c) 2005, Germany (8/28)

The user double-clicks on "complex" and the vocabulary entry
appears at the right.

 The user can click on [Web Lookup] to get a standard definition.

IB Computer Science Sample Dossier Project – by Dave Mulkey, (c) 2005, Germany (9/28)

If the user clicks on a word that is not in the vocabulary help-file,
the program automatically shows the web-site definition.

IB Computer Science Sample Dossier Project – by Dave Mulkey, (c) 2005, Germany (10/28)

Both the reading window (left) and the vocabulary window (right)
display HTML correctly, so the vocabulary list can display formatting
and graphics. (Both display boxes are JEditorPane controls.)

IB Computer Science Sample Dossier Project – by Dave Mulkey, (c) 2005, Germany (11/28)

Discussion with the Intended User

Mr S was very pleased with the prototype for the student
Reading-Helper. He said it seemed quite easy to use. He
liked the web-site link for looking up words not in a vocabulary
list from the teacher. He asked whether we could find out
which words students clicked on, so we would know which
words needed more/better explanations. He also asked
whether he could "track" completion of assignments.

Reader Interface

We agreed that the basic design of the reading interface was
good, but a few more items needed to be added.

• a student ID login would be required, so that the program

could record the files (and dates) that students read, and
teachers could check that students do assigned reading

• it would be useful to record the vocabulary words that
students click on, so teachers could see which words
were clicked often and thus need explanations

• the [File] button should be replaced by a list of current
reading assignments (in a drop-down box)

• a menu(s) should be added with things like "Open File",
"Open student record", "Log-off", etc.

• some other menus might also be useful, but those should
be designed to support the goals (later)

Further Interfaces – Mock-up Prototype

Interfaces are also needed for the teacher modules - writing
vocabulary lists and reviewing student records. I sketched
these briefly in consultation with Mr S. Then I drew them
more clearly with MS Word. The results are shown below.

Vocabulary Recorder Interface

This is similar to the reader interface, with the vocabulary-help
box replaced by vocabulary-input boxes. When the teacher
clicks on a word, the word appears in the box on the right, the
teacher types a definition, and presses [Save] to add this to
the vocabulary file for this document. (Arrows illustrate the
order of clicks and typing).

The word and definition are saved in a formatted text-file. The
teacher can read this file (in a pop-up window) by clicking on
[See All]. Later, this file is converted to an HTML file which
can be edited with a standard HTML editor (described below).

 Vocabulary Recorder

Reading Assignment

This box displays a reading assignment
(loaded by clicking [Open File]). When
the teacher double-clicks a word, like
this extremely extraordinary one, the
word appears in the box at the right.
Then the teacher can type a definition
(including a sample sentence if they
wish) and click [Save].

Open File Web Lookup

Save

extraordinary

Highly unusual, usually
in a positive sense -
much better than the rest

"He has extraordinary
talent ."

See All

IB Computer Science Sample Dossier Project – by Dave Mulkey, (c) 2005, Germany (12/28)

Student Records Reviewer

This interface allows the teacher to review student records - to
see what they have been reading. Each reading session will
have a record of the file-name and all the vocabulary clicks.
This interface can also change the students password (to
prevent students from using each-others' accounts). The
student's name is picked from a drop-down list. Then the
teacher can pick a session from the Sessions list and read the
information about that session. Arrows show the flow of
control (order of clicks).

File Management

After some discussion, we agreed that it wouldn't be
necessary to program a document-management interface.
Teachers can easily create folders and store documents on
the server without a special program.

Further Discussion with the User

Mr S had a variety of questions related to the prototypes.
Some are summarized here - there were lots of little questions
about colors and other small details. My initial answers are
also shown (marked with @).

Some of the questions were suggested by me – things like
preventing duplicate entries. Mr S agreed that these were
important issues.

Student Reader

• If the student clicks twice on the same word, will that be

recorded?
@- Yes, if you want that.

• How should we record the list of reading assignments for
each student?
@- Ah, we should add that to the Student Records
Reviewer interface. I need to think about that and
redesign the interface.

• Can we include an interactive vocabulary quiz?
@- No, I don't think I'll have time to do that, but maybe in a
later version.

• Will there be a [back] button like a normal browser?
@- No, I don't know how to do a [back] button, but links
will work - connected documents could link to each other

• What about plurals and other endings? We don't want to
write extra entries for these.
@- That sounds complicated – I don't know if I can do it.

 Student Records Reviewer

Kim, Chris

01.09.05 Moby Dick
02.09.05 The Heart
17.09.05 Quadratics
17.09.05 Sci09-13A
17.09.05 Othello

Reading Doc : The Heart
Session Began : 10:45
Session Ended : 11:17
Vocabulary Clicks:
complex
knowledge
disease
sternum* (web lookup)
disease
apex
disease

Add New Student Change Password

IB Computer Science Sample Dossier Project – by Dave Mulkey, (c) 2005, Germany (13/28)

Vocabulary Recorder

• Can we use bold and italics in the definitions? How?

My colleagues won't be able to type HTML tags.
@- You can type HTML tags like bold. The other
teachers will need to get along without bold and italics, but
maybe I can think of a simple solution.

• Can we write extra versions of the word in the word-box?
Like "geometry" and "geometric"? Or do we need to make
2 separate entries? Can we at least copy the definition?
@- It's simplest to make 2 entries, but I'll think about it.
Maybe a cleverer search algorithm can solve that problem.
I already took care of plurals in the prototype, but it doesn't
work perfectly yet.

• You had a picture of a hospital in the prototype. How can
we do that ?
@- Write an HTML tag It isn't too difficult. Of
course you'll need to get a picture, e.g. from Google.

• Do we need to write a separate list of vocabulary for every
document, or can we re-use it for other documents?
@- We can add an extra utility for merging vocabulary
files. Maybe we can add that to the vocabulary recorder,
as a separate function. This is an important issue and will
require further thought.

Student Records Reviewer

• My colleagues and I share some students. What happens

if a student name gets added more than once?
@- I'll make the program reject duplicate names. If there
really are duplicate names, you can add numbers (Kim2).

HTML and File Formats

Mr S was concerned about using HTML as the basic file
format. His colleagues only know how to use MS Word. I
checked the file formats supported by JEditorPane. It
displays RTF and HTML and TXT, but not DOC or PDF. He
said that RTF would probably work best for the other
teachers, but he was happy with HTML.

Using HTML is pretty central to the whole concept - both for
document display and for searching for a vocabulary entry.
The vocabulary files must be structured, including delimiters
(markers) marking words with |bars| and the ends of
definitions with tildas ~~~. In the prototype it looks like this:

|complex|
 it has many details, and many connections
 between the details – it is difficult to understand
~~~ 
|hollow|   
    …….. 

    
This is embedded in an HTML file for easy editing.  It can still 
be edited by the user and decoded by the program, as 
demonstrated in the feasibility prototype.  It could be done 
differently, but this method maintains flexibility and reusability 
for the future. Someone said "XML is the future".  I don't know 
anything about XML, so I decided to stick to HTML. 
 
Standard Tools 
 
Standard editors – especially MS Word for .rtf files and a 
WYSIWYG editor for HTML – can be used to edit reading files 
and vocabulary files.



IB Computer Science Sample Dossier Project – by Dave Mulkey, (c) 2005, Germany       (14/28)  
 
User Stories 
   
The boxes below summarize user stories based on the 
investigation above.  User stores are an Extreme 
Programming concept similar to UML Use Cases. 
  
  <Angle brackets> indicate significant user actions. 
  *Asterisks* indicate automated computer processes. 
  (Round parentheses) indicate data-storage (files). 
 
Student Stories 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Teacher Stories 
 
 
 
 
 
 
 
 

Task:    Read an Assignment                             User  :  Student 
 
Interface :  Reading-Helper 
Input     : readable document  and vocabulary list from (server) 
Output  : document is *displayed* in a scrollable box 
Actions : user <scrolls> up and down, <clicks> on vocab words  
Automation : interface *displays* HTML or RTF doc properly, 
                *records* user actions in a (log-file) 

Task:   Look-up Vocabulary Word                    User  :  Student 
 
Interface :  Reading-Helper 
Input     : readable document  and vocabulary list from (server) 
Actions : <click> on vocabulary words 
Automation :  *highlight* clicked word, then *search* for the word 
         in the vocabulary list or *connect* to web-site dictionary 
Output  : *display* vocabulary word with definition, 
                *record* click action in user (log-file) 

Task:   Log-in                                                          User : Student 
Interface :  Pop-up dialog 
Actions :  <Type> name and password  
Automation : *Validate* user name +password – reject if incorrect 

Task :  Write Vocabulary List                                   User : Teacher 
 
Interface :  Vocabulary-Recorder 
Input     :  reading document 
Output  : *display* chosen document 
Actions : <click> on a word in the document, 
                <type> a definition for the word 
Automation : *display* clicked word in vocabulary entry area 
                 *accept* definition, *store* new entry in (vocab file)  

Task :  Review Student Reading Sessions                User : Teacher 
 
Interface :  Student-Records-Reviewer 
Input  :   Student names from (log-in file) 
               Student session records from (sessions file) 
Output : *display* list of student names 
               *display* reading session records = times + vocab clicks 
Actions : <click> on a student name to *display* list of sessions 
               <click> on a session to *display* details of that session 
Automation : *search* for a student name 
                       *retrieve* sessions for that student 

Task : Add new student                                           User : Teacher 
Interface : Student-Records-Reviewer 
Input :  <type> name + password for new student 
Automation : <add> new name + password into the (log-in file) 
             <reject> duplicate student names 
            
Task : Change student password                          User : Teacher 
Interface :  Student-Records-Reviewer 
Input    :  Student names from (log-in file) 
Actions :  <choose> a student name , <type> new password 
Automation : <find> student name in (log-in file) 
                <change> password in (log-in file) 



IB Computer Science Sample Dossier Project – by Dave Mulkey, (c) 2005, Germany       (15/28)  

 
More User Stories 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Revisions 
 
After discussions with the user and summarizing the user 
stories, a few changes in the initial system design and the 
user interfaces were needed.  Most important was the 
addition of student data files in the system design.  
The revisions are shown below. 
 
Revised System Design 
 
 
 
 

Task :   Collect Documents to Read                    User : Teacher 
 
Input  :  Documents can be collected in several ways: 
            <copy> an existing document 
            <convert> from MS word .DOC format to .RTF 
            <type> the text into a word-processor or HTML editor 
            <scan> a paper document with a scanner 
Output : *save* file into (server folders) 
Automation :  None -  use standard tools (MS  Word, Web editor)  
               This does not require programming, but needs user 
               instructions and coordination between teachers. 
             

Task :   Make individual student reading lists      User : Teacher 
 
Interface :  Should add this to the Student-Records-Reviewer 
Input     :    Current reading list from (assignment file) 
                  List of all document names from (server) 
Output  :    New or changed reading list into (assignments file) 
Actions  :   <click> on lists to *add* or *delete* items 
Automation :  *collect*  list of all document names from (server) 
                   *save* reading list into (assignments file) 

Doc Server 
Reading  

Documents 
+ 

Vocabulary 
Lists 

ESL Student  
    Reading Helper 
 
 Doc 

  to 
Read 

Vocab 
Help 

Teacher 
  Vocabulary List 
    Writing Tool 

Reading 
   Doc New 

Vocab 
Entry 

Student Data Files 
 Login Names+PW 
 Reading Sessions Data 
 Individual Reading Lists 
 

Teacher 
  Review Student 
         Records 
 
Manage individual 
reading assignment lists 
 
See which words the 
student(s) clicked on 

Task :  Combine Vocab Lists to Big List            User : Teacher 
 
Interface:  Vocabulary-Recorder 
Input    :  Vocabulary lists from (server) 
Output :  Big vocabulary list to (server) 
Actions :  <choose> vocab lists 
Automation:  *merge lists* , *eleminate* duplicates, 
                      *save* to (server) 
                   

Teacher – Manage Reading Documents 
Reading documents are typed, copied, 
scanned and saved using standard software 



IB Computer Science Sample Dossier Project – by Dave Mulkey, (c) 2005, Germany       (16/28)  

 
Revised Interfaces 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Current Vocabulary List    
=assignment= 
  work that is required by another person 
  "Teachers give homework assignments." 
=extraordinary= 
  Highly unusual in a positive sense –  
  much better than the rest 
  "He has extraordinary talent." 
  …….. 

Reading-Helper 

Reading Assignment 
 
This box displays a reading assignment 
(loaded by clicking [Assignments]).  
When the student double-clicks a word, 
like this extraordinary one, the word 
appears in the box at the right, and the 
program looks up a definition in the 
vocabulary list.  If the word is not in the 
list, a web-site dictionary appears 
automatically.  The user can click [Web 
Lookup] to force the web-site to appear. 

Open File 

Web Lookup 

extraordinary 

Highly unusual, usually 
in a positive sense - 
much better than the rest 
 
"He has extraordinary 
talent ." 

Log-in Assignments 

 Vocabulary Recorder 

Reading Assignment 
 
This box displays a reading 
assignment (loaded by 
clicking [Open File]).  When 
the teacher double-clicks a 
word, like this extraordinary 
one, the word appears in the 
box at the right.  Then the 
teacher can type a definition 
(including a sample sentence 
if they wish) and click [Save]. 
The teacher may use Web 
Lookup to get some ideas 
from a web-site dictionary. 

Open File 

Web Lookup 

Save 

extraordinary 

Highly unusual, usually 
in a positive sense - 
much better than the rest 
 
"He has extraordinary 
talent ." 

See All 

Merge Lists 

Merge Lists 
Choose lists 

The Heart 
Quadratics 
Sci09-13 
Tigers 
Tsunami 
….. 

Merge Now 

Student Records Reviewer 
 
 
Assignments      Reading Sessions          Session Data 

Kim, Chris      

01.09.05  Milton 
02.09.05  The Heart 
17.09.05  Quadratics 
17.09.05  Sci09-13A 
17.09.05  Othello 
17.09.05  Othello 
21.09.05  Babe Ruth 

Reading Doc :  The Heart 
Session Began : 10:45 
Session Ended : 11:17 
Vocabulary Clicks: 
complex 
knowledge 
disease 
sternum*  (web lookup) 
disease 
apex 

Add New Student Change Password 

Edit Individual Assignment Lists 

Milton 
Quadratics 
WW II 
Sci09-13 
The Heart 
Tsunami 
Othello 
 

Individual Student Assignments 
                             Click an assignment to 
                                    add it to student's list 
Indiv. Assignments    All Assignments 

Kim, Chris      

Milton 
Quadratics 
WW II 
Sci09-13 
The Heart 
Tsunami 
Othello 
 

Abacus 
Alexander 
Bill Gates 
Churchill 
Dresden 
Elephants 
The Heart 
Milton 
Othello 
Tsunami  
  …… 



IB Computer Science Sample Dossier Project – by Dave Mulkey, (c) 2005, Germany       (17/28)  

 
=== Goals (Objectives) === 
 
These goals are based on the discussions with the user, 
followed by revised system design and interface designs to 
accomplish the tasks listed in the user stories. 
 
--- General Goals (wishes) --- 
 
• More effective collection, storage, and distribution of 

reading assignments and corresponding vocabulary lists 
 

• More effective student access to reading assignments and 
use of vocabulary lists 
 

• Automation of clerical tasks like compiling and merging 
vocabulary lists 
 

• Collect and review students' reading habits and vocabulary 
needs 

 
--- Detailed Goals (requirements) --- 
 
Reading (students can do this) 
• Students can read assignments on the computer 
• Reading assignments are loaded from central storage 
• Students can click on a word to see vocabulary help 
• Vocabulary help comes from 3 different sources 

-  custom vocabulary list for the current document 
-  general vocabulary lists prepared by ESL staff 
-  standard web-based dictionary 

• Reading lists for each student are stored centrally 
• Students' vocabulary clicks are recorded for later review 
 

 
Writing (teachers can do this) 
• Teachers can see reading assignments on the screen 
• Teachers can create vocabulary lists easily by clicking on 

a word, typing a definition, and saving the entry 
• Individual vocabulary lists can automatically be merged 

into larger lists 
 
Reviewing Students' Reading (teachers can do this) 
• Teachers can create lists of reading assignments for 

individual students 
• Teachers can see dates when student(s) read 

assignments 
• Teachers can see which words students clicked on 
 
Data Storage (computer must do this) 
• Reading assignments (documents) are stored centrally, in 

a standard format (HTML and/or RTF) 
• Reading assignments can be edited with standard editors 

(MS Word or a WYSIWYG HTML editor) 
• Vocabulary lists are stored centrally in structured HTML 
• Vocabulary lists can be edited with standard editor(s) 
• Individual student reading lists are stored centrally 
• Student vocabulary needs are recorded and stored 

centrally 
 
Automation (computer must do this) 
• automatic look-up of vocabulary words 
• automatic loading of reading lists and documents 
• automated writing and formatting of vocabulary files 
• automatic recording and storage of student reading 

sessions (file-name, date, word-clicks) 
• automated restructuring (formatting and merging) of 

vocabulary lists 



IB Computer Science Sample Dossier Project – by Dave Mulkey, (c) 2005, Germany       (18/28)  
 
Restrictions/Limitations 
 
The following equipment is available at our school: 
• PCs in 4 computer labs, as well as 14 PCs in one ESL 

classroom 
• A PC on each teacher's desk 
• A local area network, usable by students and teachers 
• Servers providing hundreds of GigaBytes of central 

storage 
• All PCs have Internet access 
• All PCs run Windows 2000 OS 
• All PCs have Java installed (version 1.4 or later) 
 
The solution will be designed to function in the school's 
network environment as described above. 
 
Access Rights 
 
Students' do not have the same access rights as teachers.  
Documents need to be stored in an area where teachers have 
full access, but students have read-only access.  Student 
records (reading session data) must be saved in a different 
area, where the students have write-access. 
 
Home use 
 
Students have limited access to the school's intranet from 
home, but this will not be sufficient for this program to run at 
home.  It may be possible to "export" individual reading 
assignments and vocabulary files so students can do their 
reading at home, but it probably won't be possible to collect 
their data when they are working at home, or to provide full 
access to the entire collection of documents. 
 

 
Web Access 
 
The system should provide access to web-based dictionaries.  
When no web-access is available, the rest of the system 
should still function in our intranet.  There is no intention to 
provide web-access from home to the document collection. 
 
Document Formats 
 
The system will be designed to store and display reading 
assignments in HTML or RTF formats.  The vocabulary lists 
must be stored as HTML documents. 
 
Equipment Failure 
 
Our intranet experiences occasional outages – on the order of 
a couple times per week.  The ESL reading system will be 
unavailable during network outages.  It would be good if 
running programs don't crash immediatelhy when the network 
goes down, but this may be difficult to achieve. 
 
Large Documents 
 
The system is designed with small documents in mind – a few 
pages.  Long documents (like entire books) might function, 
but there is no intention of providing search facilities or 
indexing facilities for large documents. 
 
Document Compatibility 
 
The JEditorPane will be used for document display.  This 
imposes some limitations.  The program might support 
hyperlinks, but it will not be a full-fledged browser.  Only 
HTML and RTF will display properly – no PDF or DOC files. 



IB Computer Science Sample Dossier Project – by Dave Mulkey, 2005, Germany       (19/28)  
 
== Appendix == 
  
-- This is the listing of the feasibility prototype presented to the user (Mr S) during the Analysis stage -- 
 
import java.awt.*; 
import java.awt.event.*; 
import java.net.*; 
import java.util.*; 
import javax.swing.*; 
import javax.swing.event.*; 
import javax.swing.text.html.*; 
import java.io.*; 
 
public class ClickWords extends EasyApp  
{ 
   public static void main(String[] args) throws IOException 
   {  new ClickWords();  } 
 
   String homeFolder = System.getProperty("user.dir"); 
    
   String[][] dictionary = new String[2][50000]; 
   int dictionaryMax = -1; 
    
   String[][] vocab = new String[2][10000]; 
   int vocabMax = -1; 
    
   JEditorPane eHelp ; 
    
   JEditorPane eReading ; 
   Button bMagnaC = addButton("MagnaC",1020,50,50,30,this); 
   Button bWhatIs = addButton("What Is",1070,50,50,30,this); 
   Button bHeart = addButton("Heart",1020,50,50,30,this); 
   Button bFile = addButton("File",620,50,50,30,this); 
   Button bHelp = addButton("Help",1020,50,50,30,this); 
   Button bWeb = addButton("Web Lookup",670,50,100,30,this); 
   TextArea test = addTextArea("",620,600,300,100,this); 
    
   Label lVocab = addLabel("Vocabulary Help",620,110,100,30,this); 
    



IB Computer Science Sample Dossier Project – by Dave Mulkey, 2005, Germany       (20/28)  
 
   public ClickWords() throws IOException 
   {   
      setSize(1000,750); 
      setTitle("ESL Reading Helper - (c) Dave Mulkey, Germany, 2005"); 
      loadDictionary(homeFolder + "\\dictionary\\dictionary.htm"); 
 
      eReading = new JEditorPane("file:" + homeFolder + "\\heart\\heart.htm"); 
      eReading.setContentType("text/html"); 
      eReading.setEditable(false); 
       
      JScrollPane sWebpage = new JScrollPane(eReading); 
       
      add(sWebpage,null); 
       
      sWebpage.setBounds(10,40,600,700); 
          
      eReading.addHyperlinkListener( new HyperlinkListener() 
      //*** This code was downloaded from a Java code snippets web-site *** 
      //*** The author claims no credit for this code. **** 
         { 
            public void hyperlinkUpdate(HyperlinkEvent event) 
            { 
               HyperlinkEvent.EventType eventType = event.getEventType(); 
               if (eventType == HyperlinkEvent.EventType.ACTIVATED)  
               { 
                  if (event instanceof HTMLFrameHyperlinkEvent)  
                  { 
                    HTMLFrameHyperlinkEvent linkEvent = 
                      (HTMLFrameHyperlinkEvent) event; 
                    HTMLDocument document = 
                      (HTMLDocument) eReading.getDocument(); 
                    document.processHTMLFrameHyperlinkEvent(linkEvent); 
                  }  
                  else  
                  { 
                     showPage(event.getURL().toString()); 
                  } 
               } 
            } 
         }   
      //********  End of downloaded code  ******************************* 
      ); 



IB Computer Science Sample Dossier Project – by Dave Mulkey, 2005, Germany       (21/28)  
       
      eReading.addMouseListener( 
         new MouseAdapter() 
         { 
               public void mouseClicked(MouseEvent e) 
               { 
                  try 
                  {  String selection = eReading.getSelectedText().trim(); 
                     showHelp(selection); 
                  } 
                  catch(Exception exc) {} 
               } 
               public void mouseEntered(MouseEvent e){} 
               public void mouseExited(MouseEvent e){} 
               public void mousePressed(MouseEvent e){} 
               public void mouseReleased(MouseEvent e) 
               {  try 
                  { 
                     String selection = eReading.getSelectedText().trim(); 
                     showHelp(selection); 
                  } 
                  catch(Exception exc) {}                   
               } 
         } 
      );          
          
      eHelp = new JEditorPane(); 
      eHelp.setContentType("text/html"); 
      eHelp.setEditable(false); 
       
      JScrollPane sHelp = new JScrollPane(eHelp); 
       
      add(sHelp,null); 
      eHelp.setPage("file:" + homeFolder + "\\dictionary\\dictionary.htm"); 
       
      sHelp.setBounds(620,140,370,450); 
          
   } 
    



IB Computer Science Sample Dossier Project – by Dave Mulkey, 2005, Germany       (22/28)  
 
   public void actions(Object source,String command) 
   { 
      if (source == bMagnaC) 
      {  showPage("http://www.gutenberg.org/dirs/etext06/magna01.txt"); } 
      else if (source == bWhatIs) 
      {  showPage("http://www.gutenberg.org/files/16728/16728-h/16728-h.htm");  } 
      else if (source == bHeart) 
      {  showPage("file:" + homeFolder + "\\heart\\heart.htm"); } 
      else if (source == bFile) 
      {  showPage("file:" + chooseFile());  } 
      else if (source == bHelp) 
      {  showPage("file:" + homeFolder + "\\helpfile.htm");  } 
      else if (source == bWeb) 
      {  try{webLookup(eReading.getSelectedText().trim());  } 
         catch(Exception exc){ output("First select a word in the reading");} 
      }       
   } 
    
 
   public void showHelp(String word) 
   {   
      word = word.toLowerCase(); 
      String single = word; 
      if (single.charAt(single.length()-1) == 's') 
      {  single = single.substring(0,single.length()-1); } 
      String help = ""; 
      for (int x = 0; x <= dictionaryMax; x++) 
      {   
         if (dictionary[0][x].indexOf("|" + word + "|")>=0  
              || (help.length()==0 && dictionary[0][x].indexOf("|" + single + "|")>=0)) 
         { 
            help = "<b>" + word + "</b>" + dictionary[1][x]; 
         }  
      } 
      if (help.length()>0) 
      {  String helpText = "<html><head><base href=\"" + homeFolder+"\\dictionary\\ \"></head><body>"  
                           + help + "</body>";  
         eHelp.setText(helpText);          
      } 
      else 
      {  webLookup(word);  }       
   } 

http://www.gutenberg.org/dirs/etext06/magna01.txt
http://www.gutenberg.org/files/16728/16728-h/16728-h.htm


IB Computer Science Sample Dossier Project – by Dave Mulkey, 2005, Germany       (23/28)  
       
   public void webLookup(String word) 
   { 
      runProgram("explorer \"http://www.wordwebonline.com/search.pl?w=" + word+"\""); 
   } 
 
   private void showPage(String page) 
   { 
      try  
      { 
         eReading.setPage(page); 
      } 
      catch (Exception e) 
      { 
         eReading.setText(page); 
      } 
   } 
    
   public void loadDictionary(String fileName) 
   { 
      try 
      { 
         dictionaryMax = -1; 
         BufferedReader info = new BufferedReader(new FileReader(fileName)); 
         while (info.ready()) 
         { 
            String nextWord; 
            boolean found = false; 
            do 
            {  nextWord = info.readLine(); 
               if ( nextWord.indexOf("|") >= 0 ) 
               {  found = true; } 
            } while (!found && info.ready());    
             
            if (found) 
            {  dictionaryMax = dictionaryMax + 1; 
 
               dictionary[0][dictionaryMax] = nextWord; 
             

http://www.wordwebonline.com/search.pl?w


IB Computer Science Sample Dossier Project – by Dave Mulkey, 2005, Germany       (24/28)  
 
               String ex = ""; 
               boolean done = false; 
               do 
               { 
                  String more = info.readLine(); 
                  if ( more.indexOf("~~~") == -1 ) 
                  { ex = ex + more ; } 
                  else 
                  { done = true; } 
               }   while (!done && info.ready() ); 
               dictionary[1][dictionaryMax] = ex; 
           }   
         } 
         info.close(); 
      } 
      catch (IOException exc) 
      {  output(exc.toString()); } 
   } 
    
} 



IB Computer Science Sample Dossier Project – by Dave Mulkey, 2005, Germany       (25/28)  
 
Criterion A1: Analysing the problem    © International Baccalaureate Organization 2004 
 
The documentation should be completed first and contain a thorough discussion of the problem that is 
being solved. This should concentrate on the problem and the goals that are being set, not on the 
method of solution. A good analysis includes information such as sample data, information and 
requests from the identified end-user, and possibly some background of how the problem has been 
solved in the past. A systematic method is one that takes into account what input and output will 
occur and what calculations and processes will be necessary to obtain the desired output. 
 
 
0 :  The student has not reached a standard described by any of the descriptors given below.  
      For example, the student has simply described the programmed solution. 
 
 
1 :  The student only states the problem to be solved or shows some evidence  
      that relevant information has been collected. 
 
 
2 :  The student describes the problem to be solved. 
 
 
3 :  The student describes the problem and provides evidence  
      that information relating to the problem has been collected. 
 
 
4 :  The student provides evidence that a systematic method  
       has been used in the analysis of the problem. 
 
 
This section of the program dossier would typically be two to three pages in length. It should include a 
brief statement of the problem as seen by the end-user. A discussion of the problem from the end-user’s 
point of view should take place, including the user’s needs, required input and required output. For 
example, evidence could be sample data, interviews and so on, and could be placed in an appendix. 



IB Computer Science Sample Dossier Project – by Dave Mulkey, 2005, Germany       (26/28)  

 
Criterion A2: Criteria for success    © International Baccalaureate Organization 2004 
 
This section of the program dossier will clearly state the objectives/goals of the solution to the 
problem. The expected behaviour of the solution should be clearly described and the limits under 
which it can operate outlined. 
 
 
0 :  The student has not reached a standard described by any of the descriptors given below. 
 
 
1 :  The student states some objectives of the solution. 
 
 
2 :  The student describes most of the objectives of the solution. 
 
 
3 :  The student relates all of the objectives of the solution to the analysis of the problem. 
 
 
4 :  The student relates all of the objectives of the solution to the analysis of the problem,  
      and outlines the limits under which the solution will operate. 
 
 
This section of the program dossier would typically be one to two pages in length. Objectives should 
include minimum performance and usability. These criteria for success will be referred to in 
subsequent criteria, for example criterion C2 (Usability), C4 (Success of program); D2 (Evaluating 
solutions) and D3 (Including user documentation). 
 
The limits under which the solution will operate will vary. Some examples are: 
• Time taken to return a research result from a data file 
• The response of the program to invalid and extreme data input 
• Limitations on the volume of data stored in the program 
• Usability of user input screen 
• The proper response of the program to user input. 



IB Computer Science Sample Dossier Project – by Dave Mulkey, 2005, Germany       (27/28)  

 
Criterion A3: Prototype solution    © International Baccalaureate Organization 2004 
 
The prototype solution must be preceded by an initial design for some of the main objectives that 
were determined to be the criteria for success. A prototype of the solution should be created. 
A prototype is: “The construction of a simple version of the solution that is used as part of the design 
process to demonstrate how the system will work.” 
 
 
0 :  The student has not reached a standard described by any of the descriptors given below. 
 
 
1 :  The student includes only an initial design. 
 
 
2 :  The student includes an initial design and a prototype, but they do not correspond. 
 
 
3 :  The student includes an initial design and a prototype that corresponds. 
 
 
4 :  The student includes an initial design and a complete prototype that corresponds to it  
      and documents user feedback in evaluating the prototype. 
 
 
The prototype need not be functional, it could be constructed using a number of tools such as: Visual 
Basic, PowerPoint, Mac Paint, Corel Draw for a simple Java program. The intent is to show the user 
how the system is expected to operate, what inputs are required and what outputs will be produced. A 
number of screenshots will be required for the user to be able to evaluate the solution properly. The 
prototype, at its simplest, could be a series of clear, computer-generated drawings, a hierarchical 
outline of features in text mode, or a series of screenshots. 
 
Documentation of user feedback could be, for example, a report of the user’s comments on the prototype  
 
 
 



IB Computer Science Sample Dossier Project – by Dave Mulkey, 2005, Germany       (28/28)  

Tips and Suggestions 
 
How do I get started? 
 
Don't start by writing a computer program.  You can do a  bit of 
programming early (functional prototype), but some investigation 
and design must be done first.  Choose a specific problem and 
identify an intended end-user before doing anything else. 
 
Aiming for Maximum Marks 
 
IA assessment is criterion based. This is not a test. There are no 
"right answers". There are no "points" to add up. 
 
Your documentation must meet the criteria to score maximum 
marks.  For example, if you don't have an "intended user", you 
cannot score 4 marks in section A3, and probably cannot score 
more than 2 marks in section A1. 
 

**  Read the criteria and follow them. ** 
 
Mastery Factors 
 
Check with your teacher early on to ensure the problem and your 
solution are sufficiently complex to encompass 10 mastery factors.  
For example, if you don't store any data in data files, you won't fulfill 
mastery of files (SL) or random-access files (HL).  Even in the early 
stages, you must be looking forward to the programming process.  
A missed mastery mark carries a 10% penalty! 
 
Okay, how do I proceed? 
  
You need to complete the (A) Analysis and (B) Detailed Design 
before you start writing the program.  The following process for 
Stage A is intended to : (1) meet the criteria for maximum marks; 
(2) be doable by a student;  (3) get maximum benefit from a 
moderate investment of time and effort.  Be sure to keep records 
of all your work (even scrap paper) – you will need them later. 

Suggested Process for Stage A - Analysis 
 
1. Choose a problem (be very specific) 

 
2. Choose the intended-end-user(s) (at least one real person) – 

this should not be "everybody" or "me myself" 
 

3. Describe the problem, including current/previous solutions. 
What happens now? How is it done? What is unsatisfactory? 
 

4. Collect sample documents and data from the current solution 
  

5. Outline intended improvements of a new system 
 

6. Create an initial system design (simple) for the new system 
 

7. Create a prototype – either functional (a program)  
or mocked-up (interfaces only).  
 

8. optional: Use a functional prototype to investigate the feasibility 
of programming the new system (solve some tricky problems) 
 

9. Use the prototype(s) to discuss the new system with the user 
  

10.  Collect the user's reactions and suggestions (written down) 
 

11.  Document the most significant user stories which identify the 
major tasks to be performed with the new system  
 

12.  Improve the system design and interfaces to meet the 
user's suggestions and fulfill the needs in the user stories 
  

13.   Write a clear and complete set of goals – extracted from the 
user stories and revised design – specifying what it WILL do 
 

14.  Clarify limitations of the intended system – what it WON'T do 
 

15.  Review goals and limitations with the intended user and 
revise (if necessary) until the user is satisfied 


