
IB Comp Sci Guidelines for the IA Dossier (Project) by Dave Mulkey, June 2006 1/13

-- Overview --

Your final grade in IB Computer Science comes from 3 individual grades:
• 35 % = Internal Assessment Dossier (Programming Project) due March 2007
• 32½ % = Exam Paper #1 (short problems) May 2007
• 32½ % = Exam Paper #2 (long problems) May 2007

The Internal Assessment project (dossier) counts a bit more than either of the written exams. It
provides an opportunity to develop and demonstrate programming skills in Java. The written
exams include some programming questions, so the Java skills also pay off in the exam (although
the majority of exam questions are not about programming). So it's worthwhile to devote
considerable time and effort to the Java programming project.

-- Project Outline --

The Computer Science Internal Assessment project contains a computer program, in Java, which
solves a real(istic) problem. But the project requires more than just writing a computer program,
and is completed in 4 stages:

• A = Analysis - investigating and analysing the problem - [to be done in October]
a detailed analysis of the problem with a prototype program, leading to a set of GOALS
that will guide the design and be used to test the success of the program

• B = Design - designing the program (before programming) - [to be done in November]
a pre-programming design of a complete solution describing data-structures, algorithms,
modules, and mastery items that will be included in the solution

• C = Programming - writing the Java program - [to be done in December and January]
demonstrating programming skills mastery of 10 specific techniques

• D = Documentation - paper documentation about the solution - [to be done in February]
paper documentation showing thorough testing of the program, user instructions, and
evaluation of the success of the solution.

The project will be due on Monday, 12 March, 2007 . It is all submitted on paper which will be
marked by the teacher after a 30 minute interview, during which the teacher and student run the
program. Interviews will be scheduled between 12 March and 26 March, 2007.

-- Project Requirements -

The student must write a Java program. The program must demonstrate that the student has
mastered 10 specific programming techniques. Some of these are straightforward and others are
rather difficult. There is a VERY LARGE PENALTY for any missing mastery skills. So it is
essential to choose a problem and plan a solution that sensibly uses the required techniques. Some
problems are not appropriate (for example video games) and some solutions are not appropriate
(for example Java applets in web-pages) .

--

The official IBO documents are considerably longer and more detailed than this summary.
Syllabus: http://occ.ibo.org/ibis/documents/dp/gr5/computer_science/d_5_comsc_gui_0605_1_e.pdf
Support: http://occ.ibo.org/ibis/documents/dp/gr5/computer_science/d_5_comsc_tsm_0505_1_e.pdf

http://occ.ibo.org/ibis/documents/dp/gr5/computer_science/d_5_comsc_gui_0605_1_e.pdf
http://occ.ibo.org/ibis/documents/dp/gr5/computer_science/d_5_comsc_tsm_0505_1_e.pdf

IB Comp Sci Guidelines for the IA Dossier (Project) by Dave Mulkey, June 2006 2/13

-- Paper Documentation --

The project is graded by the teacher, but sample projects are sent away for moderation, so the
teacher's marks are not final. Paper documentation is extremely important in this project - the
teacher will run the program, but the IBO moderator will only receive paper documentation - the
moderator will never run the program. So it is essential that:

• thorough records are kept during the analysis stage (don't throw away your notes)
• a complete design is produced on paper during the design stage (do this before writing the

program)
• the program listing is clear and well structured and contains ample comments (uses good

style)
• all the program's features and functionality are tested and the tests are recorded on paper

(LOTS of testing)
All the documentation and records can be collected electronically, but in the end they must be
printed and submitted on paper.

-- Mastery of Programming Techniques --

A key part of the project is demonstrating mastery. Each student must clearly demonstrate
successful use of a variety of programming techniques. There is some flexibility in the choice of
techniques (10 chosen from a list of 15), allowing students to use techniques appropriate to the
problem they are solving. But this flexibility is limited, so most students end up choosing a data-
base oriented problem to make it easy to use the required techniques.

-- Choosing a Topic --

The most important considerations when choosing a topic are:

• the student understands the problem (you can't write a chess program if you don't play chess)
• the student identifies an intended end-user (this must be a real other person)
• there is sufficient potential for demonstrating required mastery techniques
• the problem can be adequately solved using the student's programming skills and the

available hardware and software

-- Things to Avoid --

The following are forbidden and/or discouraged:

• collaboration - students must do the work alone - especially writing the program - "teamwork"
is not permitted

• animated graphics - although not actually forbidden, animation cannot be documented on
paper so it cannot be rewarded in the assessment criteria. Thus, a video game is not an
acceptable topic.

• copying Java code - if Java code is copied, this must be clearly documented in the program
listing, and the student will receive no credit for that part of the program. For example, a
copied method that sorts an array would not be given credit for mastery of sorting. If standard
solutions are downloaded, they should be used for clearly separate functions than the parts
the student is programming.

• writing the program first - although a prototype is a required part of the analysis and design
stages, the actual program must be written after the analysis and design are done

• writing for yourself as the only intended user - the program might be useful to the author,
but there must still be a separate end-user who is involved in the analysis and testing stages.

IB Comp Sci Guidelines for the IA Dossier (Project) by Dave Mulkey, June 2006 3/13

Project Topic Areas - The Good, the Bad and the Painful

• Databases (straightforward - most students do this)
Library circulation, Contacts (telephone numbers and addresses), Inventory, Video rentals,
Sports, personal calendar, colleges DB, CAS activities DB - many possibilities around school

• Games (a bit harder)
Board-games (tic-tac-toe, chess), Gambling games, educational online quiz.
Some ideas at: <http://www.mazeworks.com/home.htm>

• Text-File Processing (tricky - better for HL)
Mail-merge, Spell-check, File format conversion (HTML to text), Language translator, Index
creator, Web-page builder, extended search/replace, templates, macro text-insertion

• Simulations (rather difficult)
Queuing simulation, Gambling simulation, Physics experiments (pendulum, linear motion and
momentum), pond ecology

• Mathematics (rather difficult)
Calculator, Drawing graphs, Geometry, Statistics, Charts, Financial calculations, Mortgages,
Calculating prices for pizzas with various toppings

• Tools/Utilities (generally quite difficult)
Compiler/Interpreter, File manager, Compression, Encryption, Graphics file viewer, Automatic
process scheduler, Printer control and/or layout

• Network-based (tricky and non-standard, disaster-prone)
FTP client, chat, e-mail, file exchange/storage, web-site searcher, online multi-player games

• Resource Management (generally quite difficult - most students don't understand these)
Train-route planner, PERT/CPM analysis, Scheduling classes, Balance an airplane’s freight
load, Distribute seats in an airplane

• Multimedia (probably too difficult and/or inappropriate**)
music-track editor, animation builder, video editor, video game

• Real-Time (probably too difficult and/or inappropriate**)
Robot control, Sensors and switches (temperature sensors and light switches), Traffic lights,
Elevators, Burglar alarms

** The last two categories are generally inappropriate as it is not possible to provide sample-output
on paper.

http://www.mazeworks.com/home.htm>

IB Comp Sci Guidelines for the IA Dossier (Project) by Dave Mulkey, June 2006 4/13

Finding a Suitable Problem

Candidates must ensure that the problem provides scope for fulfilling the Mastery Factor
requirements. If you are unsure, ASK THE TEACHER!

A data-base oriented problem generally provides the most straightforward way to meet the IA
requirements and criteria. Data-files are immediately included, and there is an obvious need for
sorting and searching. However, many successful dossiers have been based on other types of
problems. The use of data-files need not be “central” to the program. If a non-database problem is
chosen, teachers should help the students find sensible, appropriate uses for files. A few ideas:

• Results file - A simulation or math program can store results in a data-file for later analysis.
This is especially sensible if the program creates large quantities of results, such as a
simulation producing output every minute for a 24 hour period, or a graphing program
generating hundreds of coordinates.

• Keyword Validation - Many input operations require a word to be typed which is in a list
of “valid” entries - for example, names of months, names of geometric figures, etc. These
could be stored in a data-file, along with associated information. In the case of geometric
figures, there may be accompanying information such as a definition, formula for the area,
etc. The validation routine might permit on-line additions to the keywords, like a spell-
check which allows additions to the dictionary.

• Conversion/Translation - A program could be "internationalized" by allowing constants
and instructions to appear in a variety of languages. Other programs may benefit from
conversions of scientific units, money units, etc, where a list of conversions is stored in a
file.

• On-Line Help/Instructions - Most programs can benefit from some on-line help. This
could be stored in a data-file, with help/instruction text stored together with key-words to
identify the topic(s).

• Log-File - In a tutorial/on-line quiz situation, store results, best times, best scores, etc. Print
error-messages and warnings into a log-file instead of on the screen. Store passwords and
ID numbers in a file. In each of these, the resulting data-file must be manipulated and used
in a meaningful way - e.g. a students' progress in a tutorial system is monitored and the
level of difficulty raised or lowered in response to their achievement level.

If files are used in a supplementary fashion (non-central), the application should also provide
some "utility" features which allow maintenance or analysis of these files - e.g. adding, deleting, or
correcting words in a dictionary or validation list, or sorting or searching a log-file before printing.
The use of data-files need not be central, but it must be non-trivial - for example, programming a
game and then saving the top scores in a data-file is not sufficient to show mastery of data-file
operations. Displaying user-instructions stored in a file is also not sufficient for demonstrating
mastery of files. On the other hand, a user-ID-login feature that looks up the user's name and
verifies their password is probably sufficient to show mastery, as long as: (1) the file can be
changed in a rational way to add new users or change passwords; (2) the presence of this feature
contributes in a meaningful way to meeting some of the goals for the project. For example, a
user log-in would probably not be useful in a mathematics graphing program.

At HL, a similar concept (supplementary use) applies to linked-lists and/or trees. The teachers
should feel free to help the students identify suitable, sensible uses for dynamic data structures. The
candidates are not required to select problems where the dynamic data structures occupy a central
role. Nevertheless, their use must be significant, not a meaningless add-on.

IB Comp Sci Guidelines for the IA Dossier (Project) by Dave Mulkey, June 2006 5/13

Further Suggestions for Avoiding Difficulties

Sample Data Files - Wherever data-files are used, documentation should contain complete,
annotated listings of the contents of some sample data-files, so the examiner (and/or teacher) can
see the effects of various operations, and see that the operations have functioned correctly. Some
sample data-files might be quite large - e.g. hundreds of records or more. These need not be printed
in their entirety, but they do make it easier to understand why some file operations are sensible (e.g.
why a binary search is better than a sequential search, or why a search operation saves time), as
well as providing a more realistic testing environment.

Realistic Problems - Although not strictly required, a "real" or "realistic" problem generally
provides more opportunities for the candidates to do some investigation and pre-coding design, and
makes the task of writing user instructions more sensible and easier. Realistic problems make many
parts of the documentation process easier.

Familiar Topics - Candidates need to understand the problem that they are solving. For this reason,
many candidates choose problems that exist in school or in areas with which they have considerable
familiarity. Some examples:
• Library circulation and customer data-base
• On-line quizzes/tutorials for school subjects (math, science, English, etc)
• Student grades, attendance, schedules
• School bus routes and rider data-base
• Travel/vacations - exchanging money, dates and times problems, airline reservations
• Retail stores - video lending, inventory, sales, ordering
• Entertainment - TV guide, movies, CD's
• Sports - statistics, planning tournaments
• Parents' business (varies with the student)

-- Interesting Problems (Danger!) --

Many "interesting" problems, such as E-mail, playing chess, video games, graphics displays can be
unsuitable for the following reasons:

• The problem is actually too difficult (which is the same reason it is interesting)

• Interesting problems can be very difficult to limit and/or clearly define

• They may be quite difficult to document properly

Interesting problems certainly increase motivation. However, teachers should provide guidance
when the students are selecting topics, to ensure that the topic has reasonable scope for complete
coverage of the required elements, and that the problem is not too difficult. In many cases it is
sufficient to help the student find a reasonable way to limit the scope of the solution.

-- Limited Solutions --

High school students won't succeed in making general-purpose commercial software similar to
a professional word-processing program, as they have neither the time nor the necessary skills. It is
better to address a very specific and limited problem. For example, rather than writing a word-
processor, the student could create a program that analyses essays by counting words and producing
an index and a list of overused words. Even if this is only usable on text-files (not .doc files), it
fills a need that might be missing from the professional word-processor, and is a problem of
roughly the correct size and complexity for this project.

IB Comp Sci Guidelines for the IA Dossier (Project) by Dave Mulkey, June 2006 6/13

== Some Ideas for SL and/or HL ==

Database

The students are asked to write a data-base management system. This has traditionally been a very
common choice for portfolios. It naturally stimulates students to cover many of the required
mastery topics. Any of the following are appropriate topic areas: phone-book (or contact manager),
recipes, dictionary, student courses and grades, teacher grade-book, school bus routes and riders,
on-line multiple-choice quiz, inventory, payroll, etc. This is appropriate for SL students.
HL students must be careful to include the less obvious mastery topics (e.g. linked-lists, trees,
recursion) - further comments in this regard appear elsewhere.

Web-Page Creator

This can be a template-based, wizard driven web-page creator. It needn't provide full editing
features. It is just a quick solution for somebody wanting a straightforward web-page. A good
solution would meet the specific needs of the intended user. For example, schools have various
events like concerts, presentations, and trips that need to be announced. The intended user might be
an activity supervisor like the band director. Such a user will have a pretty clear set of standard
information they want included. Simplicity is the goal here - not enormous flexibility.

Digital Camera Album Creator

This might assume the user has stored their photos in a single folder on the hard-disk. Then it takes
all those photos and creates an HTML file presenting the photos in a simple layout, linked to an
enlarged view when the user clicks. It probably wants to include the ability to add annotations to
the photos.

Student and/or Faculty ID Cards

This is a data-base oriented problem which is a bit more exciting than most, as it can involve
graphics (photographs) and passwords. (Photographs will only be appropriate if the programming
language and the school's hardware support this feature.) It could also involve the students in the
graphical layout of the ID card - solving the problem of squeezing the picture and all necessary
information onto the card, as well as making it look nice by using interesting fonts and colors. A
very good solution might allow the user to customize their own card with their own choice of fonts
and colors. Students must not get carried away with the DTP aspects of the problem - they still need
to completely demonstrate data-file and pointer skills.

E-mail List Manager

Manage various e-mail lists for various groups. This is especially useful in a school, club, or other
large organization which sends regular announcements to various groups of people. This will be a
much better solution if some automation is provided, such as actually sending e-mails. Good error-
handling should prevent accidental mistakes like choosing many groups accidentally. Students
should be cautioned that their tests should not generate actual spam and annoyance.

Calendar Publisher

Collects events in a database - this part can be quite simple and straightforward. A good solution
would then produce outputs in various formats - weekly calendar, monthly calendar, screen or
paper versions, alphabetically sorted. The solution will be better if it requires minimal input from
users and produces maximum outputs.

IB Comp Sci Guidelines for the IA Dossier (Project) by Dave Mulkey, June 2006 7/13

== Specific Ideas for HL ==

Stock-Market Prices Analysis

Stock market investors want to analyze historical data (past few weeks or months) as a basis for
choosing stocks to buy and sell. Typically the data would be captured from a nicely formatted text
file, but that might not permit HL students to demonstrate mastery of file operations. Students are
inclined to generate random sample data rather than using real data. However, they should be
encouraged to find a source for real data and thus produce a more realistic, usable solution.

Board Games and Puzzles (not video action games)

The knight's tour, 8 queens, and other "traditional" board-game puzzles provide stimulus for trees,
stacks, and linked-lists for an exhaustive search for a solution. The student must find an
appropriate need for data-files - otherwise they will have difficulty achieving the 100% mastery
factor. For example, chess playing programs store an "opening book" in a large data-file. A
program which allows users to solve the 8 queens problem might store all the known solutions in a
data-file, or collect successful solutions produced by users.

Simulations (Queuing, Physics Experiments, etc)

Students should simulate something with which they are already thoroughly familiar. For example,
a billiard-ball simulation should only be attempted by a student with sufficient mathematics and
physics knowledge. As with other non-data-base projects, it may be difficult to find a sensible need
for data-files here. Students may tend to produce very inflexible solutions using many iterative
calculations and techniques. They should be guided to use pointers to produce more flexible, robust
solutions.

Mail-Merge

This problem requires 3 distinct modules - creating a form letter, creating a data-base, and then
merging the two. A student should not attempt to create all three of these modules - typically a
standard word-processor can be used for writing the form letter, so the student need not program a
word-processor or text-editor. The data-base management functions are quite straightforward but
students will probably want to construct a specific record type (e.g. Name,Phone,Address) rather
than allowing a general, flexible, user-modifiable record structure. The merging process presents a
good opportunity for using pointers. Teachers may need to guide students in limiting their solutions
so that the problem does not become unmanageable. For example, merging into a text-file is
sufficient - the student need not program a merge into a proprietary word-processing file format
such as MSWord or WordPerfect. The project could be designed to use student and teacher
addresses that are already available in a data-file somewhere, but the candidate still needs to
program some data-file management features (deleting records, sorting, searching).

Math Calculator/Grapher

This is only appropriate for a student with high ability or high interest in mathematics. Plotting
fractals, 2-D and 3-D object rotations and transformations, random walk, line of best fit, etc are
problems which are not normally handled by standard calculators and software, and thus motivate
the student's efforts. There is considerable scope for using pointers here. However, it is easy to get
carried away in the mathematics and graphics and forget about the need to demonstrate mastery of
data-file operations. Suggestions for sensible inclusion of data-files appear elsewhere.

IB Comp Sci Guidelines for the IA Dossier (Project) by Dave Mulkey, June 2006 8/13

Intended End-User

There must be a specific intended end-user. This must be a real person (or people) other than the
author. This requirement causes some discomfort for many IB Computer Science students, so they
try to avoid it. Students must overcome their discomfort early and engage in productive
discussions with the intended user during the analysis and design stages. If done correctly, this
makes the programming job easier. Avoid the following:

• Don't say "my program is for everyone." That makes the problem very difficult to define, and
even more difficult to solve. Choose one specific user for discussions - you may wish to think
about a group of users, but this should be a small group. For example, "all teachers" is a bad
choice, but "several teachers in the math department" is a reasonable choice. "All students" is a
bad choice, but "some of the IB Diploma candidates at my school" is a reasonable choice.

• Think about the intended user when choosing the problem. Making a "personal calendar" is
different for a businessman than an elementary school student. The intended user has a
significant effect on the problem definition and analysis, the design, and eventually the choice
of the problem.

• Let the user help you - talk to them regularly. If you are in the middle of writing the program
and trying to decide how a specific interface should look, a brief conversation with the user
might reveal that they are happy with a very simple interface, or that they actually don't need
that feature at all, thus saving time and energy for the programmer.

• Take notes every time you are talking to the user. Otherwise, you must keep everything in
your head. More likely, you will simply forget and ignore some of the useful ideas that came
from discussions with the user.

• Find a sophisticated user - one who knows something about computers and uses them often.
Otherwise, they will either have lots of impossible ideas (e.g. "I want to use a microphone to
talk to the computer"), or even worse they might have no ideas at all (e.g. "I don't care,
anything's okay").

Concentrate on the Problem

During this project you should be building a solution for a problem - NOT inventing a problem
to match a solution. Nevertheless, you must choose a problem that CAN be solved by writing a
computer program in Java. So you will probably start with an idea based on some Java program
that you have already written - that doesn't mean you are finished before you start. Careful
analysis of the problem will reveal lots of issues you might not think of right away. In the end the
success of your project will be assessed against the GOALS you set in the beginning. You should:

• Investigate the problem thoroughly and carefully

• Be creative when thinking about the goals

• Discuss the goals with the user and reach agreement

• Make the list of goals as clear and concise as possible without sacrificing functionality
Concentrate on some clear benefit for the user - something that makes their life easier

• Don't add extra (cool) features if they are not actually needed – this only adds more work
without improving the solution (and probably leads to lower marks in the IB assessment)

IB Comp Sci Guidelines for the IA Dossier (Project) by Dave Mulkey, June 2006 9/13

Creeping Featurism and other Designer Disasters

Many IB Computer Science students encounter significant difficulties in their dossier projects.
They start out quite enthusiastic, with good intentions, hoping to create a "killer app". Later they
find themselves drowning in complexity. As the deadline approaches (in March) they cut corners
and leave things out. In the end the program is not nearly as good as they intended and they receive
a poor grade. This has happened to many students in the past. What went wrong?

Poor Goals in Stage A

Too many or over ambitious goals lead to failure. Unclear goals lead to confusion and frustration.
A clear list of achievable goals is best. Clearly identify a few important goals and implement
them thoroughly and correctly - don't add lots of "cool features". Just say no to creeping featurism!

Incomplete Design in Stage B

Starting with a vague or incomplete design, students thrash around looking for a sensible direction
for their program. In the worst case scenario they create several unsuccessful versions and throw
them away. If students put a clear and complete design on paper (in stage B), the teacher can assess
this and make suggestions and corrections before the student wastes time and suffers during the
programming stage.

Little Attention to Mastery Factors

Solutions must use 10 specific mastery factors in a non-trivial (meaningful) fashion. Attention to
mastery factor coverage needs to start during Stage B. If the stage B design does not pay attention
to mastery factors, it is quite possible to design a very good real-world solution but still get a very
bad grade. Attention to mastery factors must continue in stage C, where they must be successfully
used. Remember - the penalty for missing mastery factors is VERY LARGE! Don't ignore them.

Poor Programming and Testing in Stage C

Students often use inefficient, overly simplistic and inflexible programming techniques. Even
students who know how to do things better may rely on ineffective techniques like copying and
pasting program code. They compound these errors by doing very little or limited testing. If the
program doesn't run, it needs fixing. But if it fails over and over again, this usually indicates poor
basic strategies. Students need to be willing to change and adopt more productive strategies.

Poor Time Management

If you start too late, or work too slowly, or ignore the need for final documentation, it is easy to end
up at the end of March with an unfinished project. Plan ahead, work diligently, don't get
sidetracked, and get help from the teacher all along throughout the project. In the worst case
scenario the program never runs - resulting in zero mastery factors!

Missing Documentation in Stage D (and other stages)

Many students leave the documentation to do at the very end, after the program is all finished and
working. Then they keep working on the program until it is too late and fail to produce required
documentation. These missing sections always score 0, and hastily done documentation usually
scores low marks. Many students include far too little sample hard-copy output. This is
especially unfortunate, as it carries penalties in several categories. It is also difficult to understand
as it is quite easy to produce lots and lots of pages. But you need to do it AFTER the program is
finished, so the program needs to be finished and tested AHEAD OF TIME. And it is really, really
foolish to do the analysis and design documentation after writing the program!

IB Comp Sci Guidelines for the IA Dossier (Project) by Dave Mulkey, June 2006 10/13

== Analysis == 1 to 2 weeks (5-10 hours)

Idea/Problem
State the problem and describe some of the details of the problem. Include an outline of existing
systems, as well as describing some intended improvements over existing systems.

Feasibility Prototype
Write a brief program to prove the feasibility of a computerized solution. This should be very
short, with little attention to the user interface. It should attack a couple of the possible technical
obstacles, especially where integration with existing systems might cause problems. For example,
if the project involves downloading data-files from the Internet, the feasibility prototype should
show more-or-less how it is possible to do this.

Find a User
Find a user who is interested in the idea. Show them the feasibility prototype if that is appropriate
and useful. Collect questions and scenarios (stories). Help the user to describe scenarios, and
encourage him/her to think in more comprehensive and precise terms.

Scenarios
Write down scenarios (stories) describing various situations with a variety of results. This should
be fairly comprehensive (covering many aspects of the problem), but needn't be "complete". This
might be done in conjunction with the user, or written first and then discussed with the user.

Discuss Scenarios with User
Discuss written scenarios with the user and add more to produce a complete picture of needs and
wishes. Expand list of written scenarios.

Mock-up Prototype
Produce mock-ups of user-interfaces, inputs and outputs, and list of data-storage requirements.
This should be fairly complete, but need not be very detailed. User-interfaces shown here are more
a base of discussion with the user than and actual commitment to specific appearance.

Goals Meeting
Show mock-up to user. Check that the mock-up is consistent with the scenarios. Sit together and
write list of goals, features, and limitations.

Criteria for Success
Write criteria for success based on mock-up and goals. Get user approval and supervisor approval
for these criteria. This document serves a central role throughout the project.

Supervisor Approval
Obtain supervisor approval before proceeding to the design phase. The supervisor should also
ensure that the choice of problem and goals are neither too easy nor too difficult - there must be
sufficient scope to achieve 10 (or more) mastery aspects.

Comments: These steps needn't occur in exactly this order, but more or less. Partial, incomplete,
and revised documents should be preserved for inclusion in the appendix of the final project.

IB Comp Sci Guidelines for the IA Dossier (Project) by Dave Mulkey, June 2006 11/13

== Design == 2 to 3 weeks (10-15 hours)

Item Extraction
From scenarios and goals, extract nouns and verbs to find data items and processes needed.

Tasks Outline --> Program Outline
Write an outline of the tasks the user will be able to perform. Under each task, list the modules
needed for each task. Modules include: algorithms, data-structures, and objects (classes).

Object Model
Make a list of objects (classes) needed. Break down the objects into these members:
 User Interface
 Events
 Actions --> with reference to specific methods and algorithms
 Data --> properties and data structures should be specifically mentioned
Name each member and provide a brief description of its purpose.

Supervisor Approval - Obtain approval for the initial outline before proceeding further.

Data-Structures
Design Data-Structures to accommodate data-storage needs of designed objects. Be sure to
include sample data and expected storage needs (size), as well as diagrams to clarify non-trivial
structures such as trees. Clearly explain any ADTs, including the reason for using them. New
ideas will probably occur and require further algorithms to be added to the object model (above).

Algorithm Details
Design algorithms including clear, detailed explanations of how algorithms will function. This may
include pseudo-code and java code snippets to clearly explain the intended programming.
Complete method headers must be written, but pseudo-code needn't be as precise as Java code.
Standard algorithms may be identified by name – e.g. “execute sequential search”. Non-standard
algorithms must be described in greater detail. Java test-code may be written to test feasibility, but
explanations should not be presented as finished Java code.

Refinement
During design, new ideas for criteria for success may occur - e.g. reorganizing files, use of other
hardware, etc. These can be integrated into the goals document, as long as important user-oriented
goals are not sacrificed.

Mastery Factors
Your design must include clear reference to the mastery factors that will be demonstrated. For
example, if one of the data-structures is a RandomAccessFile, and there are methods for saving and
searching, then that covers 2 mastery items. Make a list of the mastery factors you will
demonstrate, with the names of data-structures and methods which will demonstrate them.

Supervisor Approval
Obtain supervisor approval before proceeding to implementation (programming). The supervisor
should ensure there is sufficient scope to achieve 10 (or more) mastery aspects.

Comments: Object, data-structure, and algorithm designs must adequately support the goals
stated in the criteria for success, as well as demonstrating mastery factors. The plan must be
achievable with the student's programming abilities and available equipment.

IB Comp Sci Guidelines for the IA Dossier (Project) by Dave Mulkey, June 2006 12/13

 == Program Construction == 6 to 8 weeks (30-40 hr)

Alpha Version
Start with a simple version, with a simple interface and meeting only a few goals - this might be a
small extension of the prototype. Develop and debug this version. Accomplish some of the more
difficult technical tasks - e.g. build the base of library functions necessary to make the rest of the
program work - but it is not necessary to achieve all functionality at this point. This is a technical
release, not a user release. DON'T leave bugs in this version for later. The bugs are easier to find
in this small version than hunting them down later in a big program. The programmer should
assess this version themselves.

Beta Version
Add all features. Don't worry about usability and error-handling yet, except where these are
essential for making this version work. Make sure ALL the mastery aspects are accomplished in
this version, and that virtually all the functional criteria for success are met. If some of the success
criteria involve usability or performance, some of these may be left for the next version.

User Beta Testing
Get the user to spend some time testing the beta version, and to make comments about needed
improvements. Most important are complaints about failure to meet success criteria. User(s) may
suggest usability and performance improvements - note these for inclusion in the next version.

Supervisor Check
Have the supervisor check the code to ensure that mastery aspects have been met. If not, some
significant redesign and reprogramming may be necessary. The code should be thoroughly
documented and easily readable at this point. The supervisor should suggest improvements.

Finished Version
The finished version of the program should correctly address all the following:
 adequately meet all the criteria for success
 demonstrate 10 (or more) mastery aspects
 adequate usability
 adequate error-handling
 adequate performance (speed and/or data storage efficiency)

Usability and Error Handling Documentation
Write descriptions and explanations of usability considerations and error handling features.
Where appropriate this should refer to criteria for success.

Incremental Development Cycles - Code, Test, Fix
Development should be cyclic. The Beta version is an expansion/elaboration of the alpha version.
Each cycle includes programming, testing, and debugging. Comments in the source code and
collection of test-cases (and possibly test-harness methods) should document the development.

Debugging
Testing must be documented. Long debugging sessions should produce collection of test-cases that
will be presented later. A journal may be useful in this context - i.e. “Today I spent an hour
debugging the sorting algorithm for the RandomAccessFile, which kept destroying records.”

Supervisor Check - Check that suggested improvements (above) were made, and that mastery
aspects have been achieved.

IB Comp Sci Guidelines for the IA Dossier (Project) by Dave Mulkey, June 2006 13/13

== Testing and Documentation == 2 to 3 weeks (10-15 hr)

User Documentation
Before doing the final testing and evaluation, writing the user documentation will help the
programmer organize their thoughts about the program. It may also be useful to write some of this
before finishing the program.

FINAL Test Output
All the testing in this section must be done after the final program has been written. This is not a
debugging session, but a documentation session. There will probably be failures in the program -
these must be documented rather than being fixed. If major problems surface, it may be necessary
to go back and re-finish the final version. But after that, all the testing must be performed again.

Complete Sample Run
If possible, produce a single session showing typical use of all the required features, and capture
and annotate output for this entire session. This will include only single examples of normal data,
not strange error-provoking situations nor multiple examples of the same feature.

Targeting Criteria for Success
A set of sample output should document successfully meeting the criteria for success (A2). This
must be comprehensive. It must include ample normal data to show the completeness of the
solution (e.g. lists of data rather than just single data items), as well as abnormal data to test the
robustness of the solution (e.g. proper responses to error conditions.) It must be possible for the
teacher to perform these tests, or to sit with the student while they do so.

Usability and Error-handling
Some of the sample output (above) will demonstrate usability and error-handling. The annotations
should reflect what is demonstrated in each case.

Evaluating Solutions
See notes in IB assessment criteria. Be sure to address the criteria for success, and make
suggestions of how a future version could expand these criteria.

== Final Interview ==
A 30-60 minute interview with the teacher, after the teacher has seen the documentation, helps the
teacher with the assessment. The teacher should award a holistic mark and sign the cover sheet.

Comments: These stages appear to represent a straight-line process, but we know that bugs,
mistakes, bad decisions and uncertainty cause programmers to go back to previous stages.
“Spiraling back” is inevitable, but students should do this consciously, rather than working in an
unstructured and undirected fashion. Students should always have a clear sub-goal in mind
when they are working. Are they testing? Developing? Designing? After the analysis and design
phases are finished, students should be implementing the program to meet the goals. They must
resist the temptation to add more and more features as the program becomes larger.

As the program becomes large and complex, and bugs are difficult to find, adding required
features becomes difficult - so instead of doing required work, students may create a new goal
that is easy to implement. All too often new features are actually unnecessary and disconnected.
Clever gadgets and cool interfaces (disappearing buttons, graphical decorations, etc) probably
contribute nothing to the original goals. If done sensibly, spiraling back to change the original
goals would result in a significant rethinking of the design. “Starting over” is the extreme case of
spiraling back, and it demands a complete redesign - that should be avoidable by careful decision
making during the analysis and design process. Starting over is usually not a realistic option.

