
IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (1/90)

Quiz-Tac-Toe

A sample dossier for IB Computer Science, Standard Level

Written by Dave Mulkey, Germany, July 2008

Comments

The intention of this sample dossier is not to present a “perfect” product, but to
provide a basic model, showing some good ideas and techniques that students
could use to achieve a good mark on their Internal Assessment. I have not marked
this dossier (I find it difficult to mark my own work objectively), but I'm pretty sure
this work would receive a grade 6 or 7. As far as I know, there is nothing “missing”
in this sample, and I will encourage my students to use this as a guide to ensure
that their work is complete. The dossier took 40-50 hours to complete (didn't time it
exactly). Despite my best efforts, it didn't quite fit into 100 pages.

The author is an IB Computer Science teacher at Frankfurt International School.
I have been teaching IB Comp Sci for over 20 years, as well as moderating IB
Dossiers for about half that time. The techniques shown here are similar to many
good dossiers that I have moderated in the past, as well as dossiers that my
students have submitted. I believe it follows the requirements and intentions of the
IA Criteria. The only “non-standard” part is the use of “user-stories” as the primary
vehicle for systems analysis. This is a concept borrowed from Extreme
Programming. I find this an easy methodology for my students to understand.
Certainly UML, questionnaires and other techniques are equally valid.

For further guidance, I recommend studying the graded examples in the Teacher
Support Materials, as well as carefully reading and following the Assessment
Criteria in the Subject Guide.

Teachers are welcome to distribute this work to their students and to use it for
educational purposes, but I reserve the copyright and any commercial uses are
prohibited. I make no claims are guarantees that students who follow this example
will necessarily receive good grades.

Students are discouraged from copying any of the Java code in the program listing,
and are reminded that any copied code from any source must be properly attributed
and may not be used to satisfy mastery factors.

My students have considerable success writing GUI applications using EasyApp.
Anyone interested in using EasyApp to build a GUI application can download a copy
at: http://ibcomp.fis.edu/Java/EasyApp.html

I welcome questions and suggestions, especially if you find mistakes (likely).
Please address questions and comments to: Dave_Mulkey@fis.edu

http://ibcomp.fis.edu/Java/EasyApp.html

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (2/90)

Table Of Contents

Stage A 3 - 18

A1 - Analyzing the Problem 3 - 6

A2 - Criteria for Success 7 , 16

A3 - Prototype Solution 8 - 15 , 17 - 18

Stage B 19 - 32

B1 - Data Structures 19 - 22

B3 - Modular Organization 23 - 24

B2 - Algorithms 25 - 31

Mastery Check (preliminary) 32

Stage C 33 - 50

C1 - Using Good Programming Style (listings) 33 - 48

C2 - Handling Errors 49

C3 - Success of the Program 50

Stage D 51 - 90

D1 - Annotated Hard-Copy of Test Output 51 - 87

D2 - Evaluating Solutions 88 - 89

Mastery Factors (final) 90

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (3/90)

Criterion A1 – Analyzing the Problem
Describing the Problem
Our school has lots of computers, as well as a SmartBoard in every classroom. The teachers keep
trying to find clever ways to use the computers to improve classroom instruction. They look for
“educational software”, like games and quizzes and videos and web-sites.

Ms Fizz is a math teacher at our school. She asked our Computer Science teacher whether the IB
Computer Science students could create software for her to use on her SmartBoard. So I went to
talk to Ms Fizz about some ideas. She said she wasn't interested in videos or that sort of thing, and
that most web-sites were pretty useless. But her students need lots of drill and practice, and maybe
she would be interested in programs that let the students do more drill and practice at home. She
had seen lots of educational software, but mostly it was either for social studies – like multiple
choice quizzes – or it was for doing math, like drawing graphs. She wanted a math quiz program
that the students could use on their own, or maybe she could run it on the SmartBoard during class.

After a bit of discussion, and some web-surfing, Ms Fizz mentioned an old TV show called
“Hollywood Squares” that was sort of a combination of Tic-Tac-Toe and Trivial Pursuit. She
described it like this:

There is a Tic-Tac-Toe board. When the X-player chooses a square, they have to
answer a question correctly in order to get their X on that square. Then it's O's turn.
If the player answers incorrectly, they don't get the square. So you could end up with
a board looking like this if O missed a question and X answered correctly 3 times:

O
X X X

Ms Fizz had the idea that the questions could be math problems. Then 2 students could play against
each other, or she could split the class into teams that play against each other using the SmartBoard.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (4/90)

User Stories
These user stories summarize some of the discussion, especially where it leads to ideas for input,
processing, and output.

Homework is Boring and Ineffective
My students say homework is boring, so I'd like
a game that is fast and fun and will motivate my
students to practice. It needs to have quick and
easy questions, and let the students answer them
quickly and with minimal effort.

Input: problems and student answers
Processing: check whether student's answer
 matches the correct answer
Output : an X or O in the Tic-Tac-Toe board

Clever Students Should be Rewarded
Often the homework assignments are too easy
for the more capable students. They finish
quickly and get all correct answers. I'd like
them to have a reason to do more problems.
Also the challenge of playing against another
student should provide extra motivation.

Input : problems and answers from 2 students
Processing: the game determines a winner
Output : game board and notification of winner

Students Should Choose their Topic
Students should be able to choose more practice
on topics that they haven't mastered - especially
when preparing for a test. So there needs to be a
way that the students can choose the topic.

Input : name of topic
Processing : game loads a set of questions from
the chosen topic area
Output : game presents questions from chosen
topic area and tells whether answers are correct

Students Need a Clear Challenge
Using a known game, like Tic-Tac-Toe, provides
a clear goal and an appropriate challenge.
Students can measure their own achievement.

Input : students choose their topic and answer
questions
Processing : computer correctly enforces the
standard Tic-Tac-Toe rules and decides whether
answers were correct and who won
Output : game board, responding to answers,
checking who wins

Various Types of Problems
I give small 10 minute quizzes about twice a
week. I'd like to use the same type of questions
as I have on these quizzes. Those are short
problems with either multiple choice answers,
or quite simple numerical answers, or single
word answers (like fill-in-the-blank).

Input : copy existing quiz problems into the
computer to be used in the game
Processing : problems are organized according
to topic
Output : problems are saved in data files on the
hard-disk

Typing Special Symbols
Math problems often contain special symbols
like square-root signs, squared and cubed
exponents, and fractions. I'd like to be able to
type the questions in with a normal keyboard,
but the problems should appear with the correct
math symbols

Input : typing on a normal keyboard, using
short-cuts for special symbols
Processing : translate shortcut abbreviations to
correct math symbols
Output : store problems in data files with the
correct math symbols

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (5/90)

Collecting Information and Sample Data
Since the game is for a math class, the questions need to be math problems (or questions about math
vocabulary). We looked at some multiple-choice quizzes, some written tests, and some of the
homework problems in a math text-book. Here are some sample questions:

Quiz
(1) If the discriminant of a
parabola is -4, how many roots
does it have?
(a) 0 (b) 1 (c) 2 (d) 3

(2) What is the sum of the roots
of x² – 4x + 2 = 0 ?
(a) 2 (b) 4 (c) 0 (d) 1

(3) Where is the vertex of the
parabola y = x² – 4x + 2 ?

Text
(1) Draw the graph of

 y= x2−4x3
x−3

(2) Find the intersection of
 y = 2x + 3 and y = x² – 4.
Show your work.

(3) Explain how the
 discriminant is used.

Homework
(1) Graph each parabola:
 (a) y = x² – 4x + 3
 (b) y = x² – 4x + 4
 (c) y = x² – 4x + 5

(2) For each graph in #1,
state the number of roots.

(3) Write the formula of a
parabola through (-1,4) , (0,1)
and (1,0).

Ms Fizz was especially interested that the game be “fast” and “easy” and “fun”. She felt that her
students would be more likely to use the game if the questions were quick and easy to answer, if
typing the answers was easy, and if the game ended quickly so the students could play again.

It was apparent that not all the sample questions would be suitable for use in a computerized quiz
game. For example, asking the players to draw a graph is probably out of the question.

● The questions should be short and have quick answers

● The students cannot be required to draw graphs or other pictures

● The answers should not require the students to write complex formulas

● Some special symbols, like powers, should be used in the problems,
as computer symbols like x^2 are not understandable to many students

● “Show your work” is not sensible

Looking at the sample questions, it seems the quiz questions were most suitable. Multiple-choice is
particularly good, but simple numerical answers would also be acceptable.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (6/90)

Systematic Analysis of Input, Output and Processing , Possible Difficulties and Advantages
The appearance of the Tic-Tac-Toe board is pretty obvious, but the input and output of math
formulas and symbols might cause some difficulties. And creating problems might be tricky.

Outputting Questions
Math formulas often contain
strange symbols that cannot be
typed on a keyboard. These can
be created using ASCII or
Unicode, but probably won't
display “nicely”. Fractions
present a large problem – might
require graphics mode for
printing. Surds are also
difficult to print.

Simple exponents like squared
and cubed can be printed using
simple characters, but other
exponents need to be “raised”
above the x, perhaps requiring
graphics mode.

Inputting Answers
This has the same problems as
outputting the questions, but is
even more difficult because the
users want to type their answers
on the keyboard. They won't
want to look up ASCII codes
for special symbols. This might
limit the types of question and
answers that are possible. And
typing cannot be done in
graphics mode, at least not
easily.

What if the correct answer is a
surd or a fraction like 1/3? A
decimal approximation won't be
good enough.

Processing
The questions need to come
from somewhere. They cannot
be hard-coded inside the
program. They can either be
stored in data-files or created by
clever methods. For example,
to produce a random parabola
problem, the program can
choose random numbers for the
coefficients A, B, and C. But
Ms Fizz says A, B, and C need
to “fit together” - they can't just
be chosen at random.

Comparing users answers to
correct answers can be difficult,
as the user might type 0.3333
instead of 1/3.

Ms Fizz agreed to produce a list of sample problems to discuss. I warned her that some problems
might not be suitable, as the printing and typing might be too difficult.

After some discussion, we agreed that multiple-choice questions were a good strategy, because they
are quicker to answer and require very little typing. But I couldn't imagine how to program the
computer to randomly generate 3 incorrect answers along with the right answer. So we agreed that
the teacher would need to write the questions ahead of time rather than the computer “generating”
the problems. True/false questions are possible, as well as simple numbers like whole numbers.

Possible Advantages of a Computer System
Since some math formulas and problems might be excluded from the game, it's important to
consider the advantages of using a computerized game.

● Students can practice as much as they wish, without needing the teacher around

● The computer gives immediate feedback about whether answers are correct

● Working with another student and playing a game should be fun and motivating,
and encourage students to spend more time practicing than they would otherwise

● The teacher can use the game on the SmartBoard during class as a motivational tool

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (7/90)

Criterion A2 (preliminary) – Criteria for Success
Considering the analysis, the following goals seem sensible. The reasons in the chart were
mentioned in the analysis above.

Goal Reason(s) Limitation(s)
Game plays Tic-Tac-Toe , using
correct Tic-Tac-Toe rules

It's fun 3x3 board only

Each Tic-Tac-Toe square asks a
question

That's the rules of the game Questions will be selected from
a list – not auto-generated

Questions should contain
appropriate math content

Students should be learning and
practicing their math

Some text-book problems are
not suitable – e.g. complex
formulas or graphs

Game should be quick, easy
and satisfying, including a
simple and clear user-interface

Motivate students to practice ,
more fun = more practice

Don't require complex input
(fractions, complex formulas)

Teacher can create and save
problems

Auto-generating problems is
too difficult to program

No complex formulas
Pictures?

Some special symbols can be
used in the questions – squares,
cubes, simple square-roots

Math without special symbols
is difficult to read and
understand

Many special symbols will not
be implemented, especially
fractions and complex surds
like the discriminant in the
quadratic formula

These were the preliminary goals, used to create the initial design and prototype. After discussing
the prototype with the user, the goals were revised. The complete goals are presented below,
following the prototype.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (8/90)

Criterion A3 – Prototype Solution
Initial Design
The initial design includes a data-file containing questions and the game module for playing the
game.

The finished program will need a large set of questions, but the prototype will have hard-coded
questions for test purposes. So the Questions Module will not appear in the prototype – it is only
simulated.

Prototype
We sketched out some ideas on paper, but Ms Fizz really wanted to see “how it's gonna look.” We
decided a functional prototype - as a short Java program - would be best. So I wrote a short Java
program that let Ms Fizz click on the Tic-Tac-Toe board, answer questions, and win the game.
Although it had the same 9 questions all the time, it convinced her that the students would be able
to use the game easily.

The following pages show some sample screen-shots of the running prototype. We ran the
prototype more often than shown in the screen-shots - enough to convince Ms Fizz that it would be
worthwhile to proceed with the project.

After trying out the prototype, Ms Fizz had suggestions for improvement. Her ideas are presented
at the end of the screen-shots.

 Game Module

Questions Module

 Questions and Answers
 in a Data File

 Choose questions

Game Interface
 X O X
 O X O
 [] X O

 Question

Write ¼ as a decimal

X player
Click

Answer?
 0.25

Ty
pe

An
sw

er

O player

Check Answer
Check Winner

Write
 X

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (9/90)

Prototype – Sample Screens ** the code listing is at the end of Stage A **

The quiz starts, X plays first.

X clicks on the top-left corner and answers the question.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (10/90)

X had the correct answer, so gets the square. Now it is O's turn.

O chooses the middle square and answers the question.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (11/90)

O answers correctly and gets the square.

X tries for the top-right corner, but answers the question incorrectly.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (12/90)

X answered incorrectly and thus didn't get the square. Now it's O's turn.

O tries the top-right square again, because the question was easy.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (13/90)

O answered correctly and got the square. Now it's X's turn. X goes for the block in the bottom left.

X had the right answer and gets the square. Now O goes for the block in the middle-left.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (14/90)

O answered incorrectly. Now X goes for the win.

X answered correctly and wins the game!

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (15/90)

User Feedback about the Prototype
We ran the prototype several times. Ms Fizz wanted to check whether the prototype worked for
wins along the diagonals – it worked okay. Ms Fizz had many questions – below is an excerpt.
The discussion was longer (several sessions actually), but these outline the issues affecting goals.

User Questions, Ideas and Wishes Answers
Does it correctly recognize wins in all
directions (including diagonals)?

Yes (we tested all the directions)

What happens if there is a tie – the board is
full but no winner?

The prototype doesn't recognize a tie, but the final
program will stop and say “It's a tie”. Is that okay?

If there is a tie, I guess the player with more
squares should win.

Okay, we can do that.

This always has the same 9 questions. I
think it should have different questions
(selected randomly) each time you run it.

Okay, we can do that in the final program.
Do you want the computer to invent the questions?

Can the computer invent the questions? Not really, unless they are simple math calculations.
No, I want more flexibility in the questions.
Some have words or formulas as answers,
others are numbers.

Okay, then we need to make a module that lets you
type in questions, then save them in a file, and the
program loads the questions from the file.

I don't understand about saving in files.
Is that hard?

No, we'll make a real simple interface and the saving
and choosing random questions is all automatic.

But I want the questions scrambled up, so
the players don't always know which
question is hiding in each square.

If the questions are selected randomly, they'll also be
arranged randomly in the squares.

I think in the old Hollywood Squares show, a
wrong answer automatically gave the square
to the other player. Is that possible?

Yes, it's possible – is that what you want?

I don't know – I'll think about it.
Can I type real math formulas, with
exponents and fractions?

No, I don't know how to program that. I guess you
can type x-squared if you know the ASCII code for
the squared sign, but no fractions.

Okay, I guess I can just type 3/4 , like that.
How about pictures – can I put in pictures?

I'll think about that. I don't know how to do it, but
I'll ask my teacher if it's possible.

How many questions can I have altogether? There is no limit. But it would be easier to write the
program if we set some kind of limit – like 1000
questions maximum. Is that okay?

Is that a 1000 for EVERYTHING? I have
lots of different classes, different each year.

We can make separate files for different subjects.
What subjects do you need?

Let's see... simple algebra, advanced algebra,
geometry, statistics, a few more. Maybe a
100 for each. How many can I have?

If you make a list of subjects and/or topics, we can
make a set of questions for each. You can have any
limit you like, but it's easier if the limit is fixed.

Okay, I'll think about it and make a list. Can you make a list of topics and 10 sample
questions for each? You can add more later.

Will this run on the school's web-site? No, but it can run from a server on our LAN.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (16/90)

Revised Criteria for Success after User Feedback
As a result of the user feedback, the original goals (Criteria for Success) were revised. Changes and
additions are marked with ** asterisks.

Criterion A2 (Final) – Criteria for Success

Goal Reason(s) Limitation(s)
Game plays Tic-Tac-Toe , using
correct Tic-Tac-Toe rules

It's fun 3x3 board only

Each Tic-Tac-Toe square asks a
question

That's the rules of the game Questions will be selected from
a list – not auto-generated

** Questions will be selected
randomly and scrambled

Students should not know
which questions are hiding in
each box

Questions should contain
appropriate math content

Students should be learning and
practicing their math

Some text-book problems are
not suitable – e.g. complex
formulas or graphs

Game should be quick, easy
and satisfying, including a
simple and clear user-interface

Motivate students to practice ,
more fun = more practice

Don't require complex input
(fractions, complex formulas)

Teacher can create and save
problems

Auto-generating problems is
too difficult to program

No complex formulas
Pictures?

Some special symbols can be
used in the questions – squares,
cubes, simple square-roots

Math without special symbols
is difficult to read and
understand

Many special symbols will not
be implemented, especially
fractions and complex surds
like the discriminant in the
quadratic formula

** Teacher module for typing
and saving questions and
answers

Teacher wants to create specific
questions

Only a few special symbols
Text only - no pictures

** Questions are saved into
various files according to topic.
Teacher should be able to add
more topics (files) later

Teacher has various classes and
topics

There will be a limit of 1000
questions per file

** Questions in data-files can
be added, changed and deleted
later

Teacher may need to make
changes and corrections

This will not be drag-and-drop,
but will function in text-mode
after a simple search

** It should be easy to copy a
problem, change a few numbers
and then save as a new problem

Teacher wants to make several
similar questions with slightly
different numbers

It will be done in text-mode, not
drag and drop

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (17/90)

Prototype Listing (Functional Prototype)
import java.awt.*;
public class ProtoSquares extends EasyApp {
 public static void main(String[] args)
 { new ProtoSquares(); }
 Button[][] squares = new Button[3][3];
 Label lTurn = addLabel("Player",400,100,100,35,this);
 Label turn = addLabel("X",420,120,100,100,this);
 String[] questions =
 { "True/False : Pi is approximately 22/7",
 "What is the square root of 0.25?",
 "Who is a famous mathematician \n Eunice, Euclid, or Euyou?",
 "How many faces does a cube have?",
 "What nationality was Karl Friedrich Gauss?",
 "How many feet are there in one mile?",
 "Which is largest : \n(A)\u221a2 (B)1.2² (C)9/7 ",
 "What is the root of x² - 8x + 16 ?",
 "What does 0! equal?"
 };
 String[] answers =
 { "True","0.5","Euclid","6","German","5280","A","4","1" };
 int player = 1;
 public ProtoSquares()
 { Font thefont = new Font("Arial",0,64);
 turn.setFont(thefont);
 lTurn.setFont(new Font("Arial",0,24));
 for (int row = 0; row < 3; row = row+1)
 {
 for (int col = 0; col < 3; col = col + 1)
 {
 int x = 50 + 100*col;
 int y = 50 + 100*row;
 squares[row][col] = addButton("",x,y,100,100,this);
 squares[row][col].setFont(thefont);
 }
 }
 }
 public void actions(Object source, String command)
 { int qnum = -1;
 int rnum = -1;
 int cnum = -1;
 for (int row = 0; row < 3; row = row + 1)
 { for (int col = 0; col < 3; col = col + 1)
 {
 if (source == squares[row][col])
 {qnum = row*3 + col;
 rnum = row;
 cnum = col;
 }
 }
 }

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (18/90)

 if (qnum >= 0)
 { if (squares[rnum][cnum].getLabel().equals(""))
 { String guess = input(questions[qnum]);
 if (guess.equalsIgnoreCase(answers[qnum]))
 {
 if (player == 1)
 { squares[rnum][cnum].setLabel("X"); }
 else
 { squares[rnum][cnum].setLabel("O"); }
 }
 checkWinner();
 player = -1*player;
 if (player==1)
 { turn.setText("X"); }
 else
 { turn.setText("O"); }
 }
 else
 { output("Choose an empty square"); }
 }
 }
 public void checkWinner()
 {
 for (int row = 0; row < 3; row = row + 1)
 {
 String a = squares[row][0].getLabel();
 String b = squares[row][1].getLabel();
 String c = squares[row][2].getLabel();
 if (!a.equals("") && a.equals(b) && b.equals(c))
 { output(a + " wins!");
 System.exit(0);
 }
 }
 for (int col = 0; col < 3; col = col + 1)
 {
 String a = squares[0][col].getLabel();
 String b = squares[1][col].getLabel();
 String c = squares[2][col].getLabel();
 if (!a.equals("") && a.equals(b) && b.equals(c))
 { output(a + " wins!");
 System.exit(0);
 }
 }
 String a = squares[0][0].getLabel();
 String b = squares[1][1].getLabel();
 String c = squares[2][2].getLabel();
 if (!a.equals("") && a.equals(b) && b.equals(c))
 { output(a + " wins!");
 System.exit(0);
 }
 String d = squares[0][2].getLabel();
 String e = squares[1][1].getLabel();
 String f = squares[2][0].getLabel();
 if (!d.equals("") && d.equals(e) && e.equals(f))
 { output(d + " wins!");
 System.exit(0);
 }
 }
}

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (19/90)

Stage B1 - Data-Structures
The program will contain 3 sections (modules) :

Students' Game Interface , Problem Storage , Teachers' Problem Interface

Problem Storage in Files
All the problems must be stored in data-files on a disk drive. The teacher wants separate problem
lists for various topics. Each file must contain a record for each problem. Each record contains
three fields : Question, Choices and Answer. If the question is longer, the Choices can contain part
of the question instead of multiple answers, but then the user must type the exact answer.

A multiple-choice problem looks like this:
 Question : What do you call a polygon with 8 sides?
 Choices : (A) Eightogon (B) Stop Sign (C) Octagon (D) Octogon
 Answer : C

A type-the-exact-answer question looks like this:
 Question : What is the sum of the roots of this quadratic equation?
 Choices : x^2 - 4x + 2 = 0
 Answer : 4

Text-files have the advantage that it is possible to make small corrections using a text-editor.
However, they allow only sequential access. Since a small set of 9 questions must be selected at
random from the file, a RandomAcessFile is more efficient as single problems can be accessed
directly by their record number. Although RandomAccessFiles are a bit trickier than sequential
files, the coding will probably be shorter in the long run with RandomAccessFiles.

The files will each contain 1000 records (fixed file size). Blank records will contain zero-length
Strings (blank). Each record will be 200 bytes, so 200 KiloBytes per file.

Ms Fizz agreed to these shortcuts: ^2 for squared, ^3 for cubed, and ^r for a square-root sign √ .
Like this: Roots of x^2 - 6 = 0 are ^r6 , -^r6 ==> Roots of x2−6=0 are 6 ,−6

Each data-file will look something like this file for Algebra2:

Record # Fields and Sizes Sample Data

0
Question: 90 bytes
Choices : 90 bytes
Answer : 20 bytes

Which is a root of 2x^2 - 6 = 0 ?
(A) ^r2 (B) ^r3 (C) ^r6 (D) ^r12
B

1
Question: 90 bytes
Choices : 90 bytes
Answer : 20 bytes

Where is the vertex of this parabola?
 y = x^2 + 4x + 4
(-2,0)

....

999
Question: 90 bytes
Choices : 90 bytes
Answer : 20 bytes

“”
“”
“”

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (20/90)

Ms Fizz has asked for the following topic files:

● Numbers (fractions, decimals, percents)
● Shapes (Circles, Rectangles, Triangles, etc)
● Statistics
● Equations (solving linear equations)
● Quadratics
● Graphs
● ... more to be added later ...

We agreed there should also be a feature to create a new topic. That will create an empty file with
1000 records. That way she can add more topic files whenever she wants. Here are 2 sample files
showing 5 questions each:

Numbers Quadratics
Which decimal equals 3/8?
(A) 0.38 (B) 0.375 (C) 0.388...
B

Which is a root of 2x^2 - 6 = 0 ?
(A) ^r2 (B) ^r3 (C) ^r6 (D) ^r12
B

Which fraction is largest?
(A) 3/4 (B) 4/5 (C) 7/8
C

Where is the vertex of this parabola?
 y = x^2 + 4x + 4
(-2,0)

What is 2/3 + 1/12 ?
(A) 3/4 (B) 3/15 (C) 9/12
A

Fill in the blank to “complete the square”
 x^2 - 6x + ___
9

Which number is the largest?
(A) Billion (B) Million (C) Googol
C

Solve : 2x^2 - 8x+ 6 = 0
(A) 1 , 3 (B) -1 , - 3 (C) 2 , 6
A

Calculate 30% of 30.

9

True or false: The Vertex of x^2 - 15
is located directly on the x-axis.
True

....

....

....

....

....

....

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (21/90)

Teacher Interface - Problems Stored in a Problem Class
The teacher must add new problems to the problem files. The program needs to control the input to
prevent the teacher typing text that's too long for the 90 byte fields in the file. It must also convert
shortcut codes to proper ASCII characters. The simplest way to do this is to create a data-storage
Class called Problem. This class can store the 3 fields for a single problem (Question, Choices,
Answer) and also ensure that these fields contain valid data by using accessor methods (get and set
methods). The class will look something like this:

public class Problem
{
 private String question = “”;
 private String choices = “”;
 private String answer = “”;

 public boolean setQuestion(String q)
 {
 // replace shortcuts ^r , ^2 , ^3 with ASCII characters
 // check that q.length is under 88 bytes
 // if not, return false as a rejection message
 question = q;
 return true;
 }

 public boolean setChoices(String c)
 {
 // similar to setQuestion
 }

 public boolean setAnswer(String a)
 {
 // similar to setQuestion, but length must be under 18
 }
 public String getProblem() { return problem; }
 public String getChoices() { return choices; }
 public String getAnswer() { return answer; }
 public boolean saveProblem(String fileName, int record)
 { // saves this problem into fileName
 // in position specified by record
 // writes question, choices, and answer into the file
 // returns false if the operation failed
 }
 public boolean loadProblem(String fileName, int record)
 { // loads the problem from fileName
 // at position specified by record
 // reads question, choices, and answer into the file
 // returns false if the operation failed
 }
}

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (22/90)

Game Interface - Arrays of Problems and Buttons

Set of 9 Problems in 1-D Array
The Game Interface module can use the same Problem class for storing problems. Each game must
select 9 random problems from the Files discussed above. So it will use those same files. After
selecting 9 random problems, the problems can be stored in an array - an array of Problem objects:

Problem[] problems = new Problem[9] ; // 1-dimensional array
The data will be the same as the data stored in the files (see above for sample data).

This array must be scrambled up randomly before starting the game - this can be done by swapping
two random locations and repeating that hundreds of times. It's like shuffling cards.

GUI Buttons in a 1-D Array
Although the Tic-Tac-Toe board is in the shape of a 2-dimensional array, the coding for this is
unnecessarily long. It's simpler to make a 1-dimensional array of Buttons.

 Button[] squares = new Button[9] ; // 1-dimensional array
square[0]
 at 50,50

» problem[0]

square[1]
 at 150,50

» problem[1]

square[2]
 at 250,50

» problem[2]

square[3]
 at 50,150

» problem[3]

square[4]
 at 150,150

» problem[4]

square[5]
 at 250,150

» problem[5]
square[6]
 at 50,250

» problem[6]

square[7]
 at 150,250

» problem[7]

square[8]
 at 250,250

» problem[9]

This approach is different than the prototype. It requires a bit of care in calculating the coordinates
for the positions of the buttons - coordinates are shown in the diagram above.

 The checkWinner() method is also a bit different than the prototype - it's actually shorter and easier
to code, but requires a bit more thought than a 2-D array. Checking the columns for a winner will
look something like this (it's actually less code than the prototype):

for (int col = 0; row < 3; row = row + 1)
{ String a = squares[col].getLabel();
 String b = squares[col+3].getLabel();
 String c = squares[col+6].getLabel();
 if (!a.equals(“”) && a.equals(b) && b.equals(c))
 { output(“Player ” + a + “ wins”); }
}

This also turns the problems[] and squares[] arrays into parallel arrays, making lots of the
coding simpler. For example, if squares[3] is clicked, then problems[3] is displayed.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (23/90)

Stage B3 - Modular Organization

Tasks Outline
I started organizing the solution by outlining the tasks that the users will perform and the processes
that the program will perform automatically. This outline breaks down the tasks and connects them
to the ~ automated processes ~ that must run in response. This is an overview - details are missing.

USER TASKS ~ relevant automated computer processes
---------------------------- --
TEACHER

> Choose a topic
~ store topic name and open data file
~ create and display an empty Tic-Tac-Toe board

> Add a new problem
~ format problem and replace keyboard shortcuts
~ save problem in data file

> Search for problem
~ input text
~ search for problems containing matching text
~ display each matching problem, until user accepts problem or says to quit

> Edit a problem
~ load the old version of the problem
~ allow user to make changes
~ format problem and replace keyboard shortcuts
~ save problem in data file back at the same record number

> Delete Problem
~ search for the problem, either by text or record number
~ ask user whether it's the correct problem
~ if okay, then erase the problem by writing blanks into the file

> View Entire File
~ input all problems from the file
~ display all problems in a scrolling text-area

STUDENTS
> Choose a topic

~ store topic name and open data file
~ create and display an empty Tic-Tac-Toe board

> Click on a square
~ check that square is still empty
~ if okay, then

display the question and input the student's answer
check the answer and mark square if correct
check if there is a winner, then change to other player's turn

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (24/90)

Modular Organization Chart
This chart outlines the main modules for the Quiz-Tac-Toe system. This concentrates on the
computer program's structure - it does not attempt to present the user tasks or actions.
The main purpose is to organize the computer processes from the outline (above) into modules.
The processes have been identified as methods and organized into modules (classes).

All access to Data Files should happen through the Problem Class, to ensure proper formatting and
to avoid recoding duplicate file access methods in the teacher and student modules

The ~ symbol denotes methods. The arrows show data flow (problems) between various modules.

9 Problems

Data Files
w/ Problems
- Numbers

- Quadratics
....

 teacher

Teacher Interface - Edit Problems

 ~ saveProblem

 ~ loadProblem

 ~ chooseTopic
~ previewProblem

~ createNewTopicFile
~ copyProblem

~ viewAllProblems
~ searchForText
~ deleteProblem

Load & Save

student O

student X

Student Interface - Play the Game

 [question]
GUI [choices]
 [answer]

<command>
<buttons>

Current
 Problem

show
save

 GUI Game Board
 -squares[9]

 X O X
 O X O
[] O O

~ createEmptyBoard
 ~ chooseTopic

~ handleClickedBox
~ answerQuestion

~ checkWinner
~ getRandomProblems

problems[9]
array

contains
9 Problem

records

~saveProb(rec)
~loadProb(rec)

Problem
Class

- question
- choices
- answer

~ getQuestion
~ setQuestion
~ getChoices
~ setChoices
~ getAnswer
~setAnswer

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (25/90)

Stage B2 - Algorithms
Now that the methods have been named and organized, this section presents the methods as
algorithms with detailed pseudocode, parameters, return values, and pre- and post-conditions.
Simple methods are not shown in detail - only the non-obvious and non-standard algorithms are
presented in detail. Pre- and post-conditions are only shown where they are significant.

== Problem Class ==

private String question
private String choices
private String answer

 ** get and set accessor methods **
getQuestion() returns String

return question
 ... getChoices and getAnswer are similar

setQuestion(String q) returns boolean
 // q contains text

// either false is returned
// or true is returned and question = q

 replace shortcuts ^r , ^2 , ^3 with ASCII characters
 if q.length > 88 then
 return false
 else
 question = q
 return true
.... similarly for setChoices and setAnswer

 ** data file access methods **
saveProblem(String fileName, int record) returns boolean
 // fileName contains a valid name

// return false if method fails
// else question, choices and answer

 // have been saved in filename at #record

 try
 { open(fileName)

 file.seek(200*record)
 write question
 file.seek(200*record + 90)
 write choices
 file.seek(200*record + 180)
 write answer
 close file
 return true
}
catch (Exception)
{ return false }

..............

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (26/90)

loadProblem(String fileName, int record) returns boolean
 // fileName must be a valid name and the
 // return false if method fails or if

// #record contains blank Strings
// else question, choices and answer

 // contain values from the data file

 try
{ file = open(fileName) for reading only
 file.seek(200*record)
 read question
 file.seek(200*record + 90)
 read choices
 file.seek(200*record + 180)
 read answer
 close file
 return true
}
catch (Exception)
{ return false }

..............

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (27/90)

== Student Game Class ==

Problem[] problems = new Problem[9]
Button[] squares = new Button[9]

createEmptyBoard() void
// creates buttons in correct locations with blank labels
x = 50 , y = 50
for b = 0 to 8

squares[b] = addButton(“”,x,y,100,100,this)
x = x + 100
if x > 250 then

x = 50
y = y + 100

..........

chooseTopic() returns String
// returns blank if topic file doesn't exist
// else returns topic name
String topic = input(“Name of topic”)
try open file named topic
 close file

return topic
catch(Exception) { return “” }

...........

handleClickedBox(Object source)
 // respond when a box is clicked

where = -1
for b = 0 to 8

if source == squares[b] then where = b

if where >= 0 then
 if (squares[where].label is blank) then

output “Pick a different square”
return

 output(problems[where].question + problems[where].choices)
 input guess
 if (guess matches problems[where].answer) then

put current player's mark on squares[where]
 change to other player's turn

..........

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (28/90)

checkWinner() void
 // program ends if there is a winner

check(0,1,2) // top row
check(3,4,5) // middle row
check(6,7,8) // bottom row
check(0,3,6) // left column
check(1,4,7) // middle column
check(2,5,8) // right column
check(0,4,8) // one diagonal
check(6,4,2) // other diagonal

..........

check(int a, int b , int c) void
// a, b, and c are between 0 and 8
// program ends if all 3 labels match

if (!squares[a].label.equals(“”)
&& squares[a].label.equals(squares[b].label)
&& squares[b].label.equals(squares[c].label)

)
 then

 output(“Player “ + squares[a].label + “ wins”)
 end program

..........

getRandomProblems(String fileName) boolean
// fileName should be an existing file and
// must contain at least 9 non-blank records
// stores 9 Problem records in the problems[] array

 String used = “”
try

for c = 0 to 8
problems[c] = new Problem()
repeat

repeat
rec = random between 0 and 999

until rec+”/” is not found in used
problems[c].loadProblem(fileName,rec)

until problems[c].question is not blank
used = used + rec + “/”

next c
return true

catch (Exception)
 { return false }

.........

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (29/90)

== Teacher Problem Editor Class ==

String topic
Problem problem // a temporary variable for saving and loading

 ** GUI Interface **
TextField questionBox // teacher uses these boxes to type input
TextField choicesBox // also existing problems can be displayed
TextField answerBox // here for editing and then saved

chooseTopic() returns String
// returns blank if topic file doesn't exist
// else returns topic name
String topic = input(“Name of topic”)
try open file named topic
 close file

return topic
catch(Exception) { return “” }

...........

saveProblem() returns boolean
 // gets problem data from TextFields

// saves problem in topic file
// if not possible return false
problem.question = questionBox.getText()
problem.choices = choicesBox.getText()
problem.answer = answerBox.getText()

if (problem.question is blank and problem.choices is blank
 or problem.answer is blank) then

 return false
rec = inputInt(“Which record number should this be - if you

 don't care, type 0 and it will be stored
 in the first blank record”)

if rec > 0 then
return problem.saveProblem(topic , rec)

else
 // need to find a blank record

rec = 0
do
 Problem temp = new Problem()
 temp.loadProblem(topic,rec)
 if temp.answer is blank then

 problem.saveProblem(topic , rec)
 return true

 end if
 rec = rec + 1
while rec < 1000
return false // if it gets here, the file is full

end if
return false // if it gets here, something bad happened

........

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (30/90)

loadProblem(String topic, int rec) returns boolean
// loads and displays a problem

success = problem.loadProblem(topic,rec)
if success == false then

return false
else

questionBox.setText(problem.question)
choicesBox.setText(problem.choices)
answerBox.setText(problem.answer)
return true

end if
........

createNewTopicFile(String topic) returns boolean
// creates a new Topic file

try
open file(topic) for reading only
return false // if it gets here, the file exists

catch(Exception)
// only gets here if the file does NOT exist
// so now create it
problem.question = “”
problem.choices = “”
problem.answer = “”
problem.saveProblem(topic,999) // creates last record

 return true
.........

tryProblem(String topic, int rec) void
// purpose : displays problem as students will see it
// allows the teacher to type an answer
// and checks right or wrong
// code can be copied from Student Game class

.........

copyProblem(String topic, int rec) void
// same as loadProblem

.........

previewAllProblems(String topic) void
// display all text from all problems in a TextArea
clear textArea
for rec = 0 to 999

problem.loadProblem(topic,rec)
textArea.append(rec+“|”+question+“|”+choices+“|”+answer)

 next rec
.........

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (31/90)

searchForText(String text) void
// similar to viewAllProblems, but only displays problems
// containing the desired text
clear textArea
for rec = 0 to 999

problem.loadProblem(topic,rec)
all = rec+“|”+question+“|”+choices+“|”+answer
if all.indexOf(text) >= 0 then

textArea.append(all)
 next rec

.........

deleteProblem(String topic, int rec) void
// erases problem #rec in topic file

put blanks into current problem
saveProblem(topic, rec)

.........

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (32/90)

Preliminary Mastery Check
Judging from the Stage B Detailed Design, the following SL mastery factors should be satisfied:

Arrays Button[] squares, Problem[] problems in Game class
User-defined objects Problem class
Objects as data records Problem class
Simple if..then.. many places
Complex if..then.. check method in Game class
Loops many places
Nested Loops getRandomProblems in Game class
User-defined methods many
User-defined methods with parameters many
User-defined methods with return values many
Sorting ------
Searching searchForText and deleteProblem
File i/o RandomAccessFiles in Problem class
Additional libraries AWT GUI interfaces in Game and Teacher modules
Sentinels or flags boolean return values for many methods

It appears that 14/15 mastery items will be demonstrated, so this should be sufficiently challenging.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (33/90)

C1 - Program Listing

Problem.java
 1 /**
 2 * @author Dave Mulkey
 3 * @date July 2008
 4 *
 5 * Quiz-Tac-Toe
 6 * Game module
 7 * IDE - Eclipse
 8 * Java - Ver 1.5
 9 * Platform - PC
 10 */
 11
 12 import java.awt.Font;
 13 import java.io.*;
 14
 15 import javax.swing.JOptionPane;
 16
 17
 18 public class Problem
 19 {
 20 private String question = "";
 21 private String choices = "";
 22 private String answer = "";
 23
 24 public String getQuestion()
 25 {
 26 return question;
 27 }
 28
 29 public String getChoices()
 30 {
 31 return choices;
 32 }
 33
 34 public String getAnswer()
 35 {
 36 return answer;
 37 }
 38
 39 public boolean setQuestion(String q)
 40 // precondition: q contains text
 41 // postcondition: either false is returned
 42 // or true is returned and question = q
 43 {
 44 q = replace(q,"^r","\u221a");
 45 q = replace(q,"^2","\u00b2");
 46 q = replace(q,"^3","\u00b3");
 47 if (q.length() > 88)
 48 {
 49 question = q.substring(0,88);
 50 return false;

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (34/90)

 51 }
 52 else
 53 {
 54 question = q;
 55 return true;
 56 }
 57 }
 58
 59 public boolean setChoices(String q)
 60 // precondition: q contains text
 61 // postcondition: either false is returned
 62 // or true is returned and choices = q
 63 {
 64 q = replace(q,"^r","\u221a"); // square root
 65 q = replace(q,"^2","\u00b2"); // squared
 66 q = replace(q,"^3","\u00b3"); // cubed
 67 if (q.length() > 88)
 68 {
 69 choices = q.substring(0,88);
 70 return false;
 71 }
 72 else
 73 {
 74 choices = q;
 75 return true;
 76 }
 77 }
 78
 79 public boolean setAnswer(String q)
 80 // precondition: q contains text
 81 // postcondition: either false is returned
 82 // or true is returned and answer = q
 83 {
 84 q = replace(q,"^r","\u221a");
 85 q = replace(q,"^2","\u00b2");
 86 q = replace(q,"^3","\u00b3");
 87 if (q.length() > 18)
 88 {
 89 answer = q.substring(0,18);
 90 return false;
 91 }
 92 else
 93 {
 94 answer = q;
 95 return true;
 96 }
 97 }
 98
 99 public String replace(String s, String find, String change)
100 // purpose : replace all occurences of *find* with *change*
101 // pre-condition : parameters set up correctly
102 // post-condition: s has been changed and is returned
103 {
104 int p = s.indexOf(find);
105 while (p >= 0)
106 {

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (35/90)

107 s = s.substring(0,p)+change + s.substring(p+find.length());
108 p = s.indexOf(find);
109 }
110 return s;
111 }
112
113 public boolean saveProblem(String fileName, int record)
114 // pre-condition: fileName must be a valid name
115 // post-condition: return false if method fails
116 // else question, choices and answer
117 // have been saved in filename at #record
118 {
119
120 try
121 {
122 RandomAccessFile file = new RandomAccessFile(fileName,"rw");
123 file.seek(200*record);
124 file.writeUTF(question);
125 file.seek(200*record + 90);
126 file.writeUTF(choices);
127 file.seek(200*record + 180);
128 file.writeUTF(answer);
129 file.close();
130 return true;
131 }
132 catch(IOException ex)
133 { return false; }
134
135 }
136
137 public boolean loadProblem(String fileName, int record)
138 // pre-condition: fileName must be a valid name
139 // post-condition: return false if method fails
140 // else question, choices and answer
141 // have been saved in filename at #record
142 {
143
144 try
145 {
146 RandomAccessFile file = new RandomAccessFile(fileName,"r");
147 file.seek(200*record);
148 question = file.readUTF();
149 file.seek(200*record + 90);
150 choices = file.readUTF();
151 file.seek(200*record + 180);
152 answer = file.readUTF();
153 file.close();
154 return true;
155 }
156 catch(IOException ex)
157 { return false; }
158
159 }
160

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (36/90)

161 public boolean isBlank()
162 // purpose : returns true if all three fields are blank
163 // pre-condition : none
164 // post-condition: returns true if blank, false if not blank
165 {
166 if (question.length()==0
167 && answer.length()==0
168 && choices.length()==0
169)
170 { return true; }
171 else
172 { return false; }
173 }
174 }

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (37/90)

Game.java

 1 /**
 2 * @author Dave Mulkey
 3 * @date July 2008
 4 *
 5 * Quiz-Tac-Toe
 6 * Game module
 7 * IDE - Eclipse
 8 * Java - Ver 1.5
 9 * Platform - PC
 10 */
 11
 12 import java.awt.*;
 13 import javax.swing.JOptionPane;
 14
 15 public class Game extends EasyApp // EasyApp for easy GUI components
 16 {
 17 public static void main(String[] args)
 18 { new Game(); }
 19
 20 Button[] squares = new Button[9]; // 3x3 game board
 21
 22 Button newGameBtn = addButton("New Game",340,40,150,40,this);
 23 Button newTopicBtn = addButton("New Topic",340,80,150,40,this);
 24 Button helpBtn = addButton("Instructions",340,300,150,40,this);
 25
 26 Label lTurn = addLabel("Player",380,150,100,35,this);
 27 Label turn = addLabel("X",390,170,100,100,this);
 28 // shows turn X or O
 29 String topic = ""; // name of current topic
 30
 31 Problem[] problems = new Problem[9];
 32
 33 String used = "";
 34
 35
 36 int player = 1; // switches between players:1 = X and -1 = O
 37 public Game()
 38 {
 39 setTitle("Quiz-Tac-Toe");
 40 setBounds(50,40,600,400);
 41 Font thefont = new Font("Arial",0,64);
 42 turn.setFont(thefont);
 43 lTurn.setFont(new Font("Arial",0,24));
 44 createEmptyBoard();
 45 chooseTopic();
 46 getRandomProblems(topic);
 47 }
 48
 49 public void actions(Object source, String command)
 50 // purpose : Find out which Button was clicked
 51 // pre-condition : a Button was clicked
 52 // post-condition: click has been handled

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (38/90)

 53 {
 54 int qnum = -1;
 55 for (int n = 0; n < 9; n = n+1)
 56 {
 57 if (source == squares[n])
 58 { qnum = n; } // remember button number
 59 }
 60
 61 if (qnum >= 0)
 62 // Handle the clicked Button
 63 { if (squares[qnum].getLabel().equals(""))
 64 { String guess = input(problems[qnum].getQuestion() ,
problems[qnum].getChoices(),24);
 65 if (guess.equalsIgnoreCase(problems[qnum].getAnswer()))
 66 { // answer was correct
 67 if (player == 1)
 68 { squares[qnum].setLabel("X"); }
 69 else
 70 { squares[qnum].setLabel("O"); }
 71 }
 72 checkWinner();
 73 player = -1*player;
 74 if (player==1) //other player's turn
 75 { turn.setText("X"); }
 76 else
 77 { turn.setText("O"); }
 78 }
 79 else
 80 {
 81 output("Choose an empty square");
 82 }
 83 }
 84 else if (source == newGameBtn)
 85 {
 86 for (int b = 0; b < 9; b = b+1) // clear the board
 87 {
 88 squares[b].setLabel("");
 89 }
 90 getRandomProblems(topic);
 91 player = 1;
 92 turn.setText("X");
 93 }
 94 else if (source == newTopicBtn)
 95 {
 96 chooseTopic();
 97 for (int b = 0; b < 9; b = b+1) // clear the board
 98 {
 99 squares[b].setLabel("");
100 }
101 getRandomProblems(topic);
102 player = 1;
103 turn.setText("X");
104 }
105 else if (source == helpBtn)
106 {
107 showInstructions();

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (39/90)

108 }
109 }
110
111 public void chooseTopic()
112 {
113 topic = "";
114 do
115 { Problem problem = new Problem();
116 topic = input("Topic name (or quit)?");
117 if (problem.loadProblem(topic,0) == false)
118 // if file does not exist
119 { topic = ""; } // then set topic back to blank
120 } while (topic.equals("")) ; // until file exists
121 }
122
123 public void getRandomProblems(String topic)
124 // purpose : choose 9 random problems from topic file
125 // pre-condition : topic file exists and contains
126 // at least 9 problems
127 // post-condition: problems[] array contains 9 problems
128 {
129 // find last problem in file
130 int last = 999;
131 Problem problem = new Problem();
132 problem.loadProblem(topic, last);
133 while(last > 0 && problem.isBlank()) // searching backwards
134 { // to find last non-blank record
135 last = last - 1;
136 problem.loadProblem(topic, last);
137 }
138 if (last < 8) // need at least 9 problems in file
139 { output("Not enough problems in this file -\n choose a
different topic");
140 return;
141 }
142 used = "";
143 for (int p = 0; p < 9; p = p+1) // choose 9 random problems
144 {
145 int r;
146 do
147 {
148 r = (int)Math.floor(Math.random()*(last+1));
 // random problem, don't
149 } while (used.indexOf(r+"")>=0); // pick same problem twice
150 used = used + r + "|";
151 problems[p] = new Problem();
152 problems[p].loadProblem(topic,r);
153 }
154 }
155
156 public void createEmptyBoard()
157 // purpose : creates Buttons and displays 3x3 board
158 // pre-condition : none
159 // post-condition : Buttons have been created and placed
160 // in correct locations and blank labels
161 {

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (40/90)

162 Font thefont = new Font("Arial",0,64);
163 int x = 10 ;
164 int y = 40;
165 for (int b = 0; b < 9; b = b+1) // create Buttons and
166 { // place them in 3x3 grid
167 squares[b] = addButton("",x,y,100,100,this);
168 squares[b].setFont(thefont);
169 x = x + 100; // calculating coordinates
170 if (x > 210)
171 {
172 x = 10;
173 y = y + 100;
174 }
175 }
176 }
177
178
179
180 public void checkWinner()
181 // purpose : Check for a tic-tac-toe winner (3 in a row)
182 // pre-condition : tic-tac-toe board exists (squares[])
183 // post-condition: if a winner is found, game ends
184 {
185 check(0,1,2); // top row
186 check(3,4,5); // middle row
187 check(6,7,8); // bottom row
188 check(0,3,6); // left column
189 check(1,4,7); // middle column
190 check(2,5,8); // right column
191 check(0,4,8); // one diagonal
192 check(6,4,2); // other diagonal
193 checkBoardFull();
194 }
195
196 public void checkBoardFull()
197 // purpose : check whether the board is full
198 // if so, the player with more squares wins
199 // pre-condition : have already checked for wins
200 // post-condition: if full, game ends
201 {
202 int countX = 0;
203 int countO = 0;
204 for (int s = 0; s < 9; s = s+1)
205 {
206 if (squares[s].getLabel().equals("X"))
207 { countX++; }
208 else if (squares[s].getLabel().equals("O"))
209 { countO++; }
210 }
211 if (countX + countO == 9)
212 { if (countX > countO)
213 { output("X wins");
214 System.exit(0);
215 }
216 else
217 { output("O wins");

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (41/90)

218 System.exit(0);
219 }
220 }
221 }
222
223 public void check(int a, int b , int c)
224 // purpose : check whether buttons a,b, and c match
225 // pre-condition : a, b, and c are between 0 and 8
226 // post-condition : program ends if all 3 labels match
227 {
228 if (!squares[a].getLabel().equals("")
229 && squares[a].getLabel().equals(squares[b].getLabel())
230 && squares[b].getLabel().equals(squares[c].getLabel())
231) // checking that 3 squares match and aren't blank
232 {
233 output("Player " + squares[a].getLabel() + " wins");
234 System.exit(0);
235 }
236 }
237
238 public String input(String msg1,String msg2, int size)
239 // Purpose : Display a problem , input and return guess
240 // pre-condition : question, choices, and font-size passed
241 // post-condition: returns user guess
242 {
243 // Swing Button accepts HTML for formatting the text
244 // For example, can use <sup> for exponents
245 // This code just writes Question and Choices on 2 lines
246 javax.swing.JButton message = new javax.swing.JButton(
247 "<html><body><pre>"
248 + msg1 + "
" + msg2 + "</pre></body></html>");
249
250 message.setFont(new Font("Arial",0,size));
251
252 return JOptionPane.showInputDialog(null,message);
253 }
254
255 public void showInstructions()
256 {
257 runProgram("explorer.exe instructions.htm");
258 }
259 }
260

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (42/90)

ProblemEditor.java
 1 /**
 2 * @author Dave Mulkey
 3 * @date July 2008
 4 *
 5 * Quiz-Tac-Toe
 6 * Problem Editor module
 7 * IDE - Eclipse
 8 * Java - Ver 1.5
 9 * Platform - PC
 10 */
 11
 12 import java.awt.*;
 13 import java.io.*;
 14
 15 import javax.swing.JOptionPane;
 16
 17 public class ProblemEditor extends EasyApp
 18 {
 19 public static void main(String[] args)
 20 { new ProblemEditor(); }
 21
 22 Problem problem = new Problem();
 23 Button topicBtn = addButton("Topic",10,40,90,30,this);
 24 TextField topicBox = addTextField("",100,40,100,30,this);
 25 Button createBtn = addButton("New Topic",200,40,100,30,this);
 26 Button showAllBtn = addButton("Show all",310,40,60,30,this);
 27 Button searchBtn = addButton("Search",370,40,60,30,this);
 28
 29 Button clearBtn = addButton("Clear",500,40,50,30,this);
 30
 31 Button saveBtn = addButton("Save",310,160,60,30,this);
 32 Button tryItBtn = addButton("Try It",370,160,60,30,this);
 33
 34 Button eraseBtn = addButton("Delete",610,40,60,30,this);
 35
 36 Label questionLbl = addLabel("Question",10,80,60,30,this);
 37 TextField questionBox = addTextField("",70,80,600,30,this);
 38 Label choicesLbl = addLabel("Choices",10,120,60,30,this);
 39 TextField choicesBox = addTextField("",70,120,600,30,this);
 40 Label answerLbl = addLabel("Answer",10,160,60,30,this);
 41 TextField answerBox = addTextField("",70,160,200,30,this);
 42 Label viewerLbl = addLabel("Viewer",10,250,50,30,this);
 43 List viewerBox = addList("",70,200,600,200,this);
 44
 45 String topic = "";
 46
 47 public ProblemEditor()
 48 {
 49 setTitle("Quiz-Tic-Tac Problems Editor");
 50 setBounds(100,100,680,410);
 51 }
 52
 53 public void actions(Object source, String command)

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (43/90)

 54 {
 55 if (source == topicBtn)
 56 { boolean success = chooseTopic();
 57 if (success == false)
 58 { output("Topic choice did not succeed");
 59 topic = "";
 60 }
 61 else
 62 { topicBox.setText(topic);
 63 previewAllProblems(topic);
 64 }
 65 }
 66 else if (source == createBtn)
 67 { topic = input("New Topic Name");
 68 boolean success = createNewTopicFile(topic);
 69 if (success == false)
 70 { output("Topic choice did not succeed");
 71 topic = "";
 72 }
 73 else
 74 { topicBox.setText(topic); }
 75 }
 76 else if (source == tryItBtn)
 77 {
 78 tryProblem();
 79 }
 80 else if (source == saveBtn)
 81 {
 82 boolean success = saveProblem(topic);
 83 if (success == false)
 84 { output("Save failed"); }
 85 previewAllProblems(topic);
 86 }
 87 else if (source == showAllBtn)
 88 { previewAllProblems(topic); }
 89 else if (source == viewerBox)
 90 {
 91 copyProblem(viewerBox.getSelectedItem());
 92 }
 93 else if (source == eraseBtn)
 94 {
 95 deleteProblem(topic);
 96 previewAllProblems(topic);
 97 }
 98 else if (source == clearBtn)
 99 {
100 questionBox.setText("");
101 choicesBox.setText("");
102 answerBox.setText("");
103 }
104 else if (source == searchBtn)
105 {
106 search(topic);
107 }
108
109 }

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (44/90)

110
111 public boolean chooseTopic()
112 {
113 topic = input("Topic name?");
114 if (problem.loadProblem(topic,0) == true)
115 {
116 return true; }
117 else
118 {
119 return false; }
120 }
121
122 public boolean createNewTopicFile(String topic)
123 // pre-condition : none
124 // post-condition: file has been created if possible
125 // otherwise return false
126 {
127 try
128 {
129 RandomAccessFile file = new RandomAccessFile(topic,"r");
130 file.seek(0);
131 String test = file.readUTF(); // try to read from file
132 return false; // if it gets here, the file exists
133 }
134 catch(Exception ex)
135 // only gets here if the file does NOT exist
136 // so now create it
137 { problem.setQuestion("");
138 problem.setChoices("");
139 problem.setAnswer("");
140 problem.saveProblem(topic,999); //create last record
141 // forcing file to 1000 records
142 return true;
143 }
144 }
145
146 public boolean saveProblem(String topic)
147 // pre-condition : TextFields should contain text
148 // post-condition : problem has been saved in topic file
149 // if not possible return false
150 {
151 problem.setQuestion(questionBox.getText());
152 problem.setChoices(choicesBox.getText());
153 problem.setAnswer(answerBox.getText());
154
155 if (problem.getQuestion().equals("")
 && problem.getChoices().equals("")
156 || problem.getAnswer().equals("")
157)
158 { output("Your problem is incomplete, but will be saved
anyway"); }
159 int rec = inputInt("Which record number should this be?\n"
160 +"If you don't care, type 0 to add it\n"
161 +"in the first blank record, or\n"
162 +"type -1 to cancel saving");
163 if (rec < 0)

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (45/90)

164 {
165 return false; }
166 else if (rec > 0)
167 {
168 return problem.saveProblem(topic , rec);}
169 else
170 // need to find a blank record
171 {
172 rec = 0;
173 do
174 { Problem temp = new Problem();
175 temp.loadProblem(topic,rec);
176 if (temp.getAnswer().equals("")
177 && temp.getChoices().equals("")
178 && temp.getQuestion().equals("")
179)
180 { problem.saveProblem(topic , rec);
181 return true;
182 }
183 else
184 { rec = rec + 1; }
185 } while (rec < 1000);
186 return false; // if it gets here, the file is full
187 // so the problem cannot be saved
188 }
189 }
190
191 public void previewAllProblems(String topic)
192 // purpose : display all text from all problems in a TextArea
193 // pre-condition : topic file should exist
194 // post-condition: textArea contains all problems
195 {
196 viewerBox.removeAll();
197 for(int rec = 0; rec < 1000; rec = rec + 1)
198 { problem.loadProblem(topic,rec);
199 if (problem.getQuestion().length()>0
200 || problem.getChoices().length()>0
201 || problem.getAnswer().length()>0
202)
203 viewerBox.add(rec+" | " + problem.getQuestion()+" | "
204 + problem.getChoices()+" | "+problem.getAnswer());
205 }
206 }
207
208 public void search(String topic)
209 // purpose : display all text from all problems in a TextArea
210 // pre-condition : toic file should exist
211 // post-condition: textArea contains all problems
212 {
213 String text = input("Text to find");
214 viewerBox.removeAll();
215 for(int rec = 0; rec < 1000; rec = rec + 1)
216 { problem.loadProblem(topic,rec);
217 if (problem.getQuestion().indexOf(text)>=0
218 || problem.getChoices().indexOf(text)>=0
219 || problem.getAnswer().indexOf(text)>=0

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (46/90)

220)
221 { viewerBox.add(rec+" | " + problem.getQuestion()+" | "
222 + problem.getChoices()+" | "+problem.getAnswer());
223 }
224 }
225 }
226
227 public void tryProblem()
228 // purpose : display current problem (in editor boxes)
229 // as students will see it, and try answering it
230 // pre-condition : TextFields contain question, choices,answer
231 // post-condition: problem is displayed
232 {
233 problem.setQuestion(questionBox.getText());
234 problem.setChoices(choicesBox.getText());
235 problem.setAnswer(answerBox.getText());
236
237 String guess = input(problem.getQuestion(),
problem.getChoices(),24);
238 if (guess.equalsIgnoreCase(problem.getAnswer()))
239 { output("Right");}
240 else
241 { output("Wrong");}
242 }
243
244 public void copyProblem(String s)
245 // purpose : copy a problem from viewerBox into TextFields
246 // then this can be edited and resaved or added
247 // as a new problem
248 // pre-condition : problems have been displayed in ViewerBox
249 // post-condition: problem is copied into TextFields
250 {
251 int p = s.indexOf("|");
252 int rec = Integer.parseInt(s.substring(0,p-1));
253 problem.loadProblem(topic,rec);
254
255 questionBox.setText(problem.getQuestion());
256 choicesBox.setText(problem.getChoices());
257 answerBox.setText(problem.getAnswer());
258
259 }
260
261 public void deleteProblem(String topic)
262 // pre-condition : none
263 // post-condition: problem #rec has been erased in topic file
264 {
265 int suggest = firstNumber(viewerBox.getSelectedItem());
266 if (suggest >= 0)
267 {
268 int rec = inputInt("Record number to delete",suggest);
269 problem.setQuestion("");
270 problem.setChoices("");
271 problem.setAnswer("");
272 problem.saveProblem(topic,rec);
273 }
274 else

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (47/90)

275 { output("First select a problem in the viewer window"); }
276 }
277
278 public int inputInt(String prompt,int suggest)
279 // a special version of input, that displays a default value
280 // in the input box - to be used when saving, to suggest
281 // saving in the same record that was hilighted
282 {
283 try
284 {
285 return
Integer.parseInt(JOptionPane.showInputDialog(null,prompt,suggest)); }
286 catch(Exception ex)
287 {
288 return 0; }
289 }
290
291 public static String input(String msg1,String msg2, int size)
292 // a special version of output to print bigger text
293 // the Swing JButton accepts HTML formatting commands
294 {
295 javax.swing.JButton message = new javax.swing.JButton(
296 "<html><body><pre>"
297 + msg1 + "
" + msg2 + "</pre></body></html>");
298
299 message.setFont(new Font("Arial",0,size));
300
301 return JOptionPane.showInputDialog(null,message);
302 }
303
304 public int firstNumber(String s)
305 // purpose : parses the int number at the beginning of s
306 // pre-condition: s should have an int followed by a space
307 // post-condition: returns the converted int value
308 // or -1 if the conversion failed
309 {
310 try
311 {
312 int p = s.indexOf(" ");
313 if (p<0)
314 {
315 return -1; }
316 else
317 {
318 return Integer.parseInt(s.substring(0,p)); }
319 }
320 catch(Exception ex)
321 {
322 return -1;
323 }
324 }
325 }

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (48/90)

QuizTacToe.java
 1 /**
 2 * @author Dave Mulkey
 3 * @date July 2008
 4 *
 5 * Quiz-Tac-Toe
 6 * Game module
 7 * IDE - Eclipse
 8 * Java - Ver 1.5
 9 * Platform - PC
10 */
11
12 // This is the MAIN start-up screen.
13 // Users can click on
14 // - TEACHERS to start the ProblemEditor
15 // - STUDENTS to start the Game interface
16
17 import java.awt.*;
18 public class QuizTacToe extends EasyApp
19 {
20 public static void main(String[] args)
21 {
22 new QuizTacToe();
23 }
24
25 Button bGame = addButton("Students",40,40,100,40,this);
26 Button bEdit = addButton("Teachers",150,40,100,40,this);
27
28 public QuizTacToe()
29 {
30 setBounds(50,50,290,100);
31 setTitle("QuizTacToe");
32 }
33
34 public void actions(Object source, String command)
35 {
36 if (source == bGame)
37 { new Game();
38 this.dispose(); // close main program,
39 // so students don't start
40 // another Game window
41 }
42 if (source == bEdit)
43 { new ProblemEditor(); // leave main program open,
44 // so teachers can start a Game
45 // to test their problems
46 }
47 }
48 }

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (49/90)

C2 - Handling Errors
File Access
All file-access commands are wrapped in try..catch.. blocks, in order to trap all IOExceptions.
See saveProblem and loadProblem in the Problem.java class.

Cheating In the Game
If a user clicks on a box that is not empty, it is rejected (screen G17).
See Game.java, lines 63-82.

Inputing an Incorrect Topic Name
If the students type a topic name that does not exist, it is rejected (screen T9).
See Game.java, lines 111-120.

If the teacher types a topic name that does not exist, it is rejected (screen T1).
See ProblemEditor.java, lines 55-65.

Saving Problems
If the teacher forgets to type an answer to a problem, she is warned (screen T5).
See ProblemEditor.java, lines 155-158.

Deleting Incorrectly
If the teacher clicks the [Delete] button before choosing a problem, an error message is displayed
(screen T7). See ProblemEditor.java, lines 261-272

Answers are Not Case Sensitive
Players can type capital or small letters, as they wish.
See Game.java, line 65.

Returning Boolean Flags
Many methods return a “success” flag as a boolean value. (T1-T12). For example, the
saveProblem and loadProblem methods in the Problem.java class.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (50/90)

C3 - Success of the Program - Testing Criteria for Success
The following table shows the Criteria For Success from A2, together with references to screen-
shots showing that the Criteria were achieved.

Criteria for Success Success?
Game plays Tic-Tac-Toe , using correct Tic-Tac-
Toe rules

Yes - (T15) to (T22)

Each Tic-Tac-Toe square asks a question Yes - various screen-shots
Questions will be selected randomly and
scrambled

Yes - see various games in (G) screen-shots,
especially (G2) and (G11)

Questions should contain appropriate math
content

Yes - various screen-shots

Game should be quick, easy and satisfying,
including a simple and clear user-interface

Yes - various screen-shots

Teacher can create and save problems Yes - all the (E) screen-shots
Some special symbols can be used in the
questions – squares, cubes, simple square-roots

Yes - (E11)

Teacher module for typing and saving questions
and answers

Yes - all the (E) screen-shots

Questions are saved into various files according
to topic.

Yes - various screen-shots, especially (T5) and
(T6)

Teacher should be able to add more topics (files)
later

Yes - (E12) to (E14)

Questions in data-files can be added, changed
and deleted later

Yes - various (E) screen-shots

It should be easy to copy a problem, change a
few numbers and then save as a new problem

Yes - (E17) to (E20)

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (51/90)

Stage D1 - Annotated Hard Copy of Test Output
The test output is organized into 4 sections

1. Typical run of the Teacher's Problem Editor
2. Typical run of the Students' Game
3. Testing reliability and error-handling
4. Testing Criteria for Success

Editor - Typical Run for Teacher's Problem Editor

(E1) The teacher opens an existing file - quadratics.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (52/90)

(E2) The editor automatically displays all the problems from the file.

(E3) The teacher wants to make more factoring problems like #7. So she clicks on #7 and the
program loads it into the editing boxes.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (53/90)

(E4) The teacher changes the question, choices, and answer boxes, then clicks [Save]. The program
automatically updates the list of problems in the Viewer box.

(E5) The teacher wants to see how the problem looks when students play the game, so she clicks
[Try it]

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (54/90)

(E6) The teacher makes a more complicated problem, using ^r for square-root symbols (surds).

(E7) Notice that the Problem class has changed ^r2 into a proper square-root sign √2 .

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (55/90)

(E8) The teacher changes her mind and decides to delete the problem. So she clicks on problem
number 11, then clicks the [Delete] button.

(E9) Now the problem has been erased from the file, but a copy remains in the editing boxes.

Pressing [Clear] would erase the contents of the editing boxes. Pressing [Save] would resave the
problem into the file.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (56/90)

(E10) Now the teacher decides to change the problem and resave it.

(E11) The teacher clicks [Try It] to see how the problem looks :

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (57/90)

(E12) The teacher decides to create a new file for statistics.

(E13) Then clicking [Show All] shows that the file is empty.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (58/90)

(E14) Now she adds a couple problems.

(E15) She decides to look back at another existing file - numbers.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (59/90)

(E16) She decides to search for “mean”, to see whether there are already some statistics problems in
this file.

(E17) There are 2 mean problems here. She decides to copy these into the Statistics file. This is a
bit cumbersome - click on a problem, then change the topic, then save the problem, then change the
topic back to numbers.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (60/90)

(E18) Now change topics to the Statistics file.

(E19) Click the [Save] button. The problem is saved into the file and the viewer is refreshed.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (61/90)

(E20) Change back to Numbers and repeat to copy the second “mean” problem.

(E21) Now she can switch back to Numbers and [Delete] the “mean” problems.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (62/90)

(E22) And delete problem #10.

(E23) Now the file has a couple of empty records at positions #7 and #10.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (63/90)

(E24) The next new problem in the Numbers file will be saved automatically in record #7.

(E25) Notice that HTML formatting tags can be used in the problems to make other exponents
besides squared and cubed, by using the <sup> superscript tag. This is automatically supported by
the JButton control used in the output method.

Notice it's probably best to not mix these up, as the ^2 squared looks different than a ².
But Ms Fizz didn't really like the idea of typing HTML tags. Maybe a different teacher will like it.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (64/90)

Game - Typical Run for Students' Game Interface
(G1) Now there are a couple topic files, so students can play the game. When the game starts, they
must type the name of a topic (numbers, quadratics, or statistics).

(G2) Now the board is blank and it's X's turn. X clicks on the top-left corner.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (65/90)

(G3) X answered correctly, so an X is drawn in the top-left square.

(G4) Now O tries for the middle square.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (66/90)

(G5) O's answer is correct, so he gets an O in the middle square. Now X tries the top-right corner.

(G6) X's answer was incorrect, so he doesn't get an X in the corner. Now O tries the same square -
pretty easy, since it's a true/false question.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (67/90)

(G7) O got the right answer, so he gets an O in the corner. Now X goes for the bottom left.

(G8) X answered correctly. Now O tries the right middle.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (68/90)

(G9) O had the correct answer and gets the square. But X goes for the middle-left square.

(G10) But the answer was wrong. Now O tries for the same square, and gets the answer correct.

Player O wins the game!

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (69/90)

(G11) They start a new game. Now there are different questions in the squares.

(G12) O tries the middle square.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (70/90)

(G13) Now player X decided to start a new game by clicking [New Game].

(G14) Pressing the [New Topic] button will also start a new game, but allows the players to select a
different topic.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (71/90)

(G15) Now the problems are a bit harder.

(G16)

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (72/90)

(G17) If X tries to cheat and click on a square that's already taken (top left), the move is rejected.

(G18) X is allowed to choose a different square - this time bottom left.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (73/90)

(G19) Now O must play top-right, but answers incorrectly.

(G20) O's answer was incorrect, so X can take the top-right square and win with a correct answer.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (74/90)

(G21) X wins along the diagonal.

(G22) In a different game, it is going to be a tie. If X answers correctly, then X will win by having
more squares (5 to 4).

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (75/90)

(G23) It's a tie, but player X wins because they have more squares.

(G24) This rule makes the game very unfair - it's much easier for X to win. But they still need to
have correct answers. The players should take turns going first. Here is a tie where O wins.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (76/90)

(G25) If a player clicks the [Instructions] button, they see the following web-page:
--

Quiz-Tac-Toe - Instructions

Quiz-Tac-Toe is a math practice game for middle and high school students.

Quiz-Tac-Toe is like a normal Tic-Tac-Toe game, but each time you click a square,
you must solve a math problem. If you answer correctly, your X or O is placed in the square.
Otherwise the square remains blank.

Winning follows normal Tic-Tac-Toe rules - 3 in a row in any direction.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (77/90)

Testing Reliability and Error-Handling
(T1) Teacher types a topic name which does not exist (no file) - it is rejected.

(T2) Rejected.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (78/90)

(T3) Teacher tries to create a [New Topic], but it is rejected because the topic already exists.

(T4) Topic is rejected.

This error message should probably be changed to be more specific - e.g. “Topic already exists”

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (79/90)

(T5) Teacher attempts to save a problem without an answer. A warning is printed, but the problem
still gets saved.

(T6) Notice that the problem was indeed saved.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (80/90)

(T7) The teacher clicks [Delete] before selecting a problem - an error message appears.

(T8) If the answer is longer than 18 characters, it is shortened to 18 characters before saving.

The question and choices are limited to 88, so the WriteUTF fits into 90 bytes.

This works okay, and prevents corruption, but should include a warning message for the user.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (81/90)

(T9) In the GAME module, very little can go wrong. The only problems that occur are when the
students type a topic name that doesn't exist, or the topic file contains fewer than 9 problems.

(T10) Topic does not exist - it is rejected.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (82/90)

(T11) The statistics file does not contain enough problems, so an error message is displayed.

(T12)

But after this error message, there is no topic at all. So the board is empty but does not respond to
clicking. It would be better if the program would ask again for a topic - but the students can click
the [New Topic] button to continue, so it's not a disaster.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (83/90)

(T13) Answers are not case-sensitive

(T14) The b answer was correct (didn't need B).

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (84/90)

Following are tests showing that all 3-in-a-row directions are recognized by the program.
They are shortened games - O always answers incorrectly.

(T15) Top-Row

(T16) Middle Row

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (85/90)

(T17) Bottom row

(T18) Left column

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (86/90)

(T19) Middle Column

(T20) Right Column

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (87/90)

(T21) One diagonal

(T22) The other diagonal

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (88/90)

D2 - Evaluating Solutions
Did the program work?
The program worked very well.

● The teacher can enter new problems and answers easily, using keyboard short-cuts for
special math symbols.

● The GUI editor interface makes it easy to review, edit, and delete old problems.

● The students' game interface is simple to use and easy to understand.

● The game follows standard Tic-Tac-Toe rules, so it's easy to play.

● Each game randomly selected a different set of questions.

● Questions are short and quickly answered.

● There were no significant run-time errors.

As shown in documentation section C4, all the criteria for success were addressed successfully.

Various data sets
The program (both editing and playing the game) worked correctly for various topics, with no
significant run-time errors. If the topic file is too short (under 9 questions), the game module
refuses to start the game, as it needs 9 questions. This possible error was handled correclty.

The design easily allows handles both multiple-choice and full-work answers (including true/false)
so the system allows flexibility in the type of question.

Limitations
Mathematical Notation
The most significant limitation is in the presentation of mathematical notation. For example,

fractions appear as “3/4” instead of ¾ or
3
4 . Since the questions are generally short and

relatively simple, this is not a huge problem. But more complex algebraic expressions such as
x2−8x12

x−6
cannot be written sensibly, so algebraic fraction problems cannot be set.

No images
The teacher originally asked about including images (diagrams) in the questions. This was not
achieved. Questions consist only of text and special symbols.

Text-Only Input
The program only accepts simple text input. This is fine for the game module, but a bit limiting for
the Problem Editor module. Teachers can type HTML markup code, but this is too difficult for
most teachers. Some teachers might be more comfortable using a word-processor than the simple
text-editor.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (89/90)

Additional Features
Future versions of the program should include the possibility of putting images in the problems.
Although the current version permits HTML code to be used, and thus an <image> tag, it seems like
it would be possible to include images. But this is difficult and the formatting of the question is
difficult to control.

An improved version of the program could allow WYSIWYG editing in a larger box, including
bold, italic, and images.

It would be nice to allow proper mathematical formula notation. This might be possible through the
use of an equation editor, like the tool in MS Word. But this is incompatible with HTML, it's not
clear how to link it with a Java program, and the results could not be stored in the
RandomAccessFile. So this feature is unlikely to be added in the near future. When we looked at
existing online quiz software, this problem also existed in all the programs we saw. The best
alternative seemed to be some Flash software, but we did not find anything that had a usable
problem editor for the teacher to use.

Appropriateness of the Initial Design
The initial design was quite complete and led easily to the finished program. Large parts of the
functional prototype were used as the basis for the finished Game module. The modular design
with 3 classes worked very well. The user interviews were very helpful, leading to a clear and
complete set of goals that led to a usable program.

Alternative Approaches
The teachers and students at our school have become accustomed to web-based solutions. That
allows the students to use the system at home, without installing any software. This Java program
cannot be set up to run “on-line” (web-based) because browsers will not open a RandomAccessFile.
So even if this program were rewritten as an Applet instead of an Application, it would still not
function on a web-site.

It appears that many web-based systems use MySQL and ASP pages to implement data-base
functionality in the WWW. Apparently JSP (Java Server Pages) allow a similar functionality. I'm
not familiar with any of these technologies, so I don't know whether this sort of change would be
appropriate.

Simple Java applications will run from a web-site (without conversion to Applets) as long as there
is not database access required. This could be set up by including the questions inside the program,
as was done in the prototype, but this greatly limits the flexibility of the system – teachers would
not be able to add and change the problems easily. So this approach is probably a dead-end.

Some students won't like the Tic-Tac-Toe game, so it would be sensible to consider other quiz
environments. Some possibilities seen in other software are: a race, flying targets, a more
conventional test situation, etc. It would be especially useful if the teacher could work on one set of
questions and the students could use the same data in a variety of quiz environments, choosing the
game they like the best. It should be reasonable straightforward to add other games that use the
same database.

IB Comp Sci SL Sample Dossier Quiz-Tac-Toe by Dave Mulkey 2008, Germany (90/90)

Mastery Factors

Mastery Factor Evidence
Arrays Button[] squares, Problem[] problems in Game class
User-defined objects Problem class, used in Game class for problems array (lines 22,

115, 175, etc), used in ProblemEditor class for problem variable
(lines 22, 137, 151, etc)

Objects as data records Problem class (same as above) . This saves 3 data items -
question, choices and answer, and implements appropriate get. and
set. accessor methods.

Simple if..then.. many places, especially Game actions method (lines 53-107)
and ProlemEditor saveProblem method (lines 146-190)

Complex if..then.. many places, especially Game checkFull method (lines 196-221)
Loops many places, especially Game getRandomProblems method (lines

123-154)
Nested Loops Game getRandomProblems method (lines 143-154)

User-defined methods many
User-defined methods with
parameters

many, especially Problem.replace method(lines 98-108)

User-defined methods with
return values

many, especially ProblemEditor.firstNumber (line 304-324)

Sorting ------ not done -------
Searching ProblemEditor.search (line 208)
File i/o RandomAccessFiles in Problem class - loadProblem (line 137) and

saveProblem (line 113)
Additional libraries AWT GUI interfaces in Game and Teacher modules, especially

Buttons for tic-tac-toe board in Game, and List box for problem
viewer in ProblemEditor

Sentinels or flags many methods return boolean flags signaling whether the method
was successful or not.

	Quiz-Tac-Toe
	Table Of Contents
	A1 - Analyzing the Problem				3 - 6
	A2 - Criteria for Success					7 , 16
	A3 - Prototype Solution					8 - 15 , 17 - 18
	B1 - Data Structures						19 - 22
	B3 - Modular Organization					23 - 24
	B2 - Algorithms							25 - 31
	Mastery Check (preliminary)				32
	C1 - Using Good Programming Style (listings)	33 - 48
	C2 - Handling Errors						49
	C3 - Success of the Program 				50
	D1 - Annotated Hard-Copy of Test Output		51 - 87
	D2 - Evaluating Solutions					88 - 89
	Mastery Factors (final)					90

	Criterion A2 (preliminary) – Criteria for Success
	Criterion A3 – Prototype Solution
	User Feedback about the Prototype
	Revised Criteria for Success after User Feedback
	Criterion A2 (Final) – Criteria for Success
	Prototype Listing (Functional Prototype)
	Stage B1 - Data-Structures
	Problem Storage in Files
	Teacher Interface - Problems Stored in a Problem Class
	Game Interface - Arrays of Problems and Buttons

	Stage B3 - Modular Organization
	Tasks Outline
	Modular Organization Chart

	Stage B2 - Algorithms
	Preliminary Mastery Check
	C1 - Program Listing
	Problem.java
	Game.java
	ProblemEditor.java

	QuizTacToe.java
	C2 - Handling Errors
	C3 - Success of the Program - Testing Criteria for Success

	Stage D1 - Annotated Hard Copy of Test Output
	Editor - Typical Run for Teacher's Problem Editor

	Quiz-Tac-Toe - Instructions
	Testing Reliability and Error-Handling
	D2 - Evaluating Solutions
	Mastery Factors

