
Computer Science Internal Assessment 
School Clubs and Activities Database 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Carmel Kozlov 
000007-034  
Frankfurt International School 
May 2007 
 
 
 
 



Table of Contents 
 
Part A 
Investigation and analysis 
 The problem (overview) …    A1 
 Existing system     A1-A2 
 Sample data      A2-A3 
Prototype and End User discussion    A4-A12 
Goals (criteria for success)     A13-A14 
 
Part B 
Data Structures      B1-B4 
Modular Organization      B5-B7 
Hierarchical Classes and Algorithm Pseudocode  B8-B15 
Mastery Factors      B16 
 
Part C 
Program Listing      C1-C55 
 Main Class      C1-C6 
 Teacher Class      C7-C13 
 Student Class      C14-C18 
 New Club Class     C19-C27 
 Search Class      C28-C41 
 Linklist Class      C42-C46 
 Admin Class      C47-C55 
Usability       C56-C58 
Handling Errors      C59-C72 
Goals with reference numbers to documentation  C73 
 
Part D 
Documentation      D1-D23 
Evaluating Solutions      D24-D26 
User Documentation      D27-D33 
Master Factors with Code Lines    D34-D35 
 



 A1 

Part A - School Clubs and Organization Database 
 
Investigation and Analysis 
 
The Problem (overview) 
Our school has a lot of after school activities, service projects and entertainment clubs. It 
is a good that there are so many options and students have a variety of clubs to choose 
from. Nevertheless, I always sensed that there is a problem as students don’t tend to find 
out what clubs they can join in a very organized manner. This discourages many students 
from joining clubs; as well all know that high school students are always busy and lazy. 
Many student doing things outside of the classroom, but because no one is supplying 
them with the information in an organized matter, many clubs stay unpopular since they 
are new, or because no one heard about them. If perhaps the students had a system in 
which they could search all possible clubs in the school and perhaps even sign up onto 
straight though that system, they might be more encouraged to join clubs. 
 
Existing System 
There are a lot of ways in which the school informs the students of the clubs there are. 
But this is exactly the problem – there are a lot of different places in which  information 
about activities are posted, but there is not one specific place in which all this information 
is presented.. The information never seems to get to people who need it, and a lot of 
people will not take care of papers that are posted around the school about a new club. 
  
For example, once a trimester a PDF file is uploaded onto the Parent portal where parents 
can look at some (but not all, and in fact a very small amount) of the after school 
activities available. We can see a fundamental problem here – the PDF file is uploaded 
onto the PARENT portal, not the student portal, since there isn’t something like that 
(only on the school servers, which students can not access from home). Indeed, there are 
students who do check the parent portal and the Tuesday folder in the parent portal 
(where the PDF file is uploaded onto), but usually in higher grades. The smaller students 
usually do not bother checking the parent portal. Since this PDF file is uploaded onto the 
parent portal, not a lot of students get to see this. Not all parents check the parent portal, 
and therefore not all parents can inform their children about the after school activities – 
therefore there is a communication problem. 
 
Another way students hear about clubs and activities is though the daily bulletin. Every 
day in the morning there are announcements, and sometimes clubs like the Kalahari 
project will post an announcement saying that students can join. This is done frequently. 
New clubs that start in the beginning of the year will randomly post announcements on 
the bulletin. This is usually confusing for most students, and they don’t seem to take great 
care for this. Other ways clubs usually get students to hear about them is post papers 
around the school campus. But this way is not useful. It causes problems as student’s 
don’t notice the posted information on the walls of the school, and do not take great 
notice to the bulletin, and most students definitely do not check the parent portal.  
 



 A2 

If I could create a program through which students could look up all the clubs 
organization in the school, which will provide them with all the necessary information 
they need (like times in which the meetings take place, what grades can join and so on), it 
will encourage students to look through the program and perhaps even help them join 
some clubs. But most importantly, it will provide all the clubs’ most important 
information in just a few clicks away. Today, our school already has a state-of-the-art 
technology facilities, and students seem to take full advantage of these facilities. 
Therefore, they wouldn’t mind using a program to find information about clubs. 
This therefore is a simple and practical solution. 
 
Sample Data 

This is a screen print of the parent portal, where we can see two clubs being advertised. 
The first is after school drama and dance lessons, and the second is an announcement for 
times for the Upper School Choirs (highlighted in black). This could easily be put into the 
program.  
 
 
 



 A3 

The following is a flyer that was posted around the school in order to advertise this club.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 



 A4 

Quantity of Data 
The system will consist of one major data type 

- club index listing 
o This will be a list of all the clubs. It will be stored in a random access file 

and it will contain all the information on the club.  
 
Initial Ideas from the intended User 
After an initial talk with the intended user, a few points were brought up 

- teachers should be able to create new clubs 
- students should be able to search for clubs easily and efficiently 
- teachers should be able to search for clubs as well 
- The interface should be simple, but effective. 
- The clubs information will be saved on random access file, which will be stored 

on the server, so that the program will be useable on different computers.   
 
Initial System Design 
The initial system design incorporates the ideas from the intended user.  
 
 
 
 
 
 
 
 
 

Server 
Random Access File 

User 
Viewing/Searching Clubs 
Deleting Clubs 
Adding clubs 



 A5 

Feasibility Prototype 
After the initial ideas the intended user and I came up with, I had a better idea of how I 
was going to do the prototype. The design should be simple and effective and therefore 
shouldn’t have any unnecessary buttons.  
The initial idea was as follows: 
The Splash Screen: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When a user presses “Teacher” an input for password and name will appear, and only 
when the password is corresponding with the right name they will be able to proceed to 
the teacher screen. Students can access it without a password, nevertheless, they will not 
have the amount of rights teachers and administrator has. The admin will only have one 
password and should be appointed to a teacher that will take responsibility over the 
managing of the program. 
When a student logs in, they will see a screen as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
STUDENT 

 
TEACHER 

Student Clubs 
~Welcome~ 

Menu 

Load All Clubs 

Search 

 
ADMIN 

Here all clubs are displayed when 
the “load all clubs” button is 
pressed. This is a text area.  



 A6 

With the “load” button all clubs will be displayed on the screen. Pressing Search will 
upload a search option in which the students and/or teachers will be able to search for 
specific clubs.  
The clubs database is saved on the server in the form of a random access file.  
There were also ideas for different searching methods for the clubs. These were presented 
to the intended user. After a brief discussion, the intended user suggested there should be 
two ways of searching for clubs: 

- by types of clubs 
- by a word search 
- by a day search 

 
While discussing this with the intended user, the following ideas came up for the first 
suggestion: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This interface provides with the user with an easy and simple search option. 
As we can see in the picture an option is to press the “type” option list, which will reveal 
a list full of the different types of activities. When for example the option “Sport” will be 
pressed, the list will show all sport clubs available, along with the rest of the information. 
Days will be shown with their letter, M = Monday, T = Tuesday, W = Wednesday, Th = 
Thursday, F = Friday, S = Saturday. This was discussed with the intended user, and was 
done in order to save space. Nevertheless, when a specific club from the list is pressed, a 
pop-up appears with further detail of the club. 
The other option would be a word search. The word search will look for the key word, 
and if it can find a club with that key word in its description, it will show the club on the 
list. 
 

 Search for a Club 

Day                 

Type 
Sport 
Drama 
Art 
Service 
….. 

Club   Day  
JV Soccer ………….M 
Elementary Soccer…T 
………………………….. 
………………………….. 
………………………….. 

Input Key word: soccer GO! 



 A7 

Further Discussion with the user 
Further discussions were taken place with the intended user, in which we came up with 
more options and ideas for the program. 

 
- User: since the teachers will be able to add clubs, could a notification appear for 

every time a student opens the program to notify of new clubs?  
Me: I don’t think that would be possible. Besides, how do we know if the next 
person who will use the program on the computer will have already seen the 
notification or not? I would have to create user-accounts and that would serve no 
real purpose. 
 

- User: there is no button on every screen that will allow the user to go back to the 
menu at any given point, can we have one? 
Me: Yes, I could do that 
 

- User: in the example you showed me, the list wasn’t alphabetically ordered. 
Whenever a user will look at a club list, can it be alphabetically ordered? 
Me: yes.  

 
- User: what if a teacher doesn’t want to log in as a teacher? Will it matter if they 

press the student button? 
Me: not at all. The student login doesn’t require a password, and is can be used 
just as browsing. If a teacher wants to log in and create a new club, they will have 
to get the password. The functions they will have as a teacher is the same as the 
students have, except they can also add clubs. Students on the other hand should 
not be able to log in as teachers.  

 
- User: can we have teachers delete their clubs? 

Me: Yes we can 
 

- User: what will happen if a user will search using the keyword function, but the 
Computer will not find anything that corresponds? 
Me: nothing will be displayed..  
 

- User: will the teachers be allowed to write how much they want to in the 
description on the club? 
Me: no, since I am using random access files. I could make an error message 
appear if they wrote too much in the description part.  

 
- User: can we have an administrator?  

Me: yes, we can 
User: I would like the administrator to manage teacher account. But I do not want 
the administrators to delete specific clubs, only the whole file, so that mistakes are 
not made and only teachers that have created a club can do so. 
Me: that is possible.  
 



 A8 

User stories 
The boxes below summarize user stories based on the investigation above. 
 
<Angle bracket> indicate significant user actions 
*Asterisk* indicate automated computer processes. 
(Round parentheses) indicate data-storage (file). 
 
Stories 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Task: Search for club 
 
Interface: Search Menu 
Input: Key Word 
Output: computer *searches* for the key words in the (file), then 
*displays* the right clubs on the screen 
Actions: user <scrolls> up and down, looks for the club that most 
interests them 
 

Task: Add Club 
 
Interface: Add club menu 
Input: teacher <fills out> necessary information, then <saves> it 
Automation: The computer *saves* the information at the end of 
the (file). 
 

Task: Contact Club 
 
Interface: Club description  
Input: student <presses> the “Contact” button 
Output: computer *opens* the “contact” interface 
Input: student <inputs> the information into the contact form 
Automation: The computer *generates* an automatic email 
and *sends* it to the necessary teacher.  

Task: Log In 
 
Interface: Splash screen 
Input: user <clicks> the correct button 
Output: if student is pressed, the main menu is *loaded*, otherwise, 
the password filed for the teacher is *loaded 
Input: teacher <inputs> password 
Automation: computer *checks* if password is correct (if it 
corresponds with the file in the server), if it is, *loads* the main 
menu screen, if not, it *re-loads* the password screen 



 A9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Task: Load All Clubs 
 
Interface: main menu 
Input: user <clicks> the “load all clubs” button 
Automation: computer *loads* all clubs from (file) and 
*displays* them in an alphabetical order. 
 

Task: Delete Club 
 
Interface: main menu, teacher login 
Input: teacher <searches> for their specific club.  
Output: computer *finds* the right random access (file) and 
*loads* it. 
Input: teacher <clicks> the “delete” button 
Output: computer <verifies> that the teacher is sure he wants 
to delete the club 
Input: teacher <clicks> on yes 
Automation: computer *deletes* the random access (file).  



 A10 

Revisions 
After the discussions with the intended user, I came up with a few changes and additions.  
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
The following screen is the search screen, both for the students and the teacher. It is the 
revised version:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Server 
Random Access File 
of all clubs 
 

Teacher 
Viewing Clubs 
Creating Clubs 
Deleting Club 

Student 
Viewing Clubs 
Searching 

Search 

Type 
Sport 
Drama 
Art 
Service 
….. 

Club   Day  
………………………….. 
………………………….. 
………………………….. 
………………………….. 
………………………….. 
 

Input Key word:  
GO! 

Menu 
Will 
allow 
users to 
go back 
to main 
menu 
whenever 
they want 
to, and to 
quit (a 
drop 
down 
menu) 

Admin 
Manage teacher 
accounts 
Delete ALL clubs 
 



 A11 

The teacher will have an interface of their own. Same with the administrators. This can 
be shown below. 
This following screen is what the interface of the teacher will look like, more or less. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pressing the create a new club button will pop up a new window which will look 
something like this:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The empty boxes will be used in order for the user to input the correct information. 
Pressing the save button will save the information on the random access file.   
 
 
 

 Welcome 

Search 

Create a 
new club 

Display 
Club 

New Club 
Name: 
 
 
Email: 
 
 
Description: 
 

SAVE 

Menu 

Delete 

Display box 



 A12 

 
The admin will have a lot more functions than the average user, and the admin screen 
will look something like this: 
 
 
  Welcome 

Search 

Create a 
new club 

Display 
Club 

Delete 

Display box 

New 
teacher 

Stats 



 A13 

Goals 
 
A condense and effective database of all clubs and organizations in our school 
The effective use of storage in order to make sure all the clubs and organizations in our 
school will be stored in the file, in a condense format.  
Making sure all clubs and organizations are actually listed in the program will be 
difficult, as not all teachers prefer to work with computers. The transition between the 
current messy system, to the condense database on the server might take a while.  
 
Effective access and use of program in order to find out information about clubs 
and organizations 
A simplistic use of GUI, that is appropriate to the use of students and teachers in that it 
doesn’t distract the user. The user should be able to use the program and find the 
necessary information in just a few clicks.  
The program can only work on the school intranet, as the files are stored on a local school 
server. Students will not have to search in the bulletin, parent portal or around the school 
in order to find the information they are looking for. It will all be stored on the files, and 
will only need to enter a keyword in order to search for something, the computer will do 
everything else automatically (the searching algorithm).  
 
Useful search options, which will allow users to find clubs uncomplicatedly 
The users will be able to either view clubs in their different categories, or search using a 
key word, or even search regarding to the day in which the club takes place. 
When a key word is put in, the program has to search through each random access file in 
order to find clubs with the given key word. In addition, the keyword that is used by the 
user might not even be anywhere in the files, even though what they are looking for does 
exist. There might be some clubs that do not really belong to any specific category and 
they will be put in the “others” category. This might hinder the student from finding what 
they are looking for. 
 
Teachers will be able to add their own new clubs 
Teachers who start their own clubs will be able to sign into the program, providing they 
ask for the password, and create their own club entry.  
A problem this might cause is the fact that it is open to all teachers, and doesn’t limit the 
amount of clubs entries they will be able to put in. This might cause some teachers to 
perhaps create double entries, or even spam the program. There will be nothing to stop 
them from doing this, as the time limitation I am under doesn’t allow me to create some 
sort of filter. In addition, the amount of information the teachers will be able to put into 
the description of their file will be limited, as this is a random access file, and is 
chronically organized. A counter will show the teacher how much space they have left to 
write in the description of their club.  
 
Teachers are able to delete their club 
If a club isn’t operating anymore for various reasons (it’s only during first half of the 
year, or it’s closed down) the teacher might choose to delete the entry so that students do 



 A14 

not get misinformed. The teacher accounts will allow each teacher to delete only clubs 
they have created. 
 
Administration of the program 
The administration of the program is important. There will be the option to delete all the 
clubs, and to add new teachers to the program.  
This is a beneficial idea.   
 
Other Limitation 
Besides the specific limitations already mentioned, the following limitations must be kept 
in mind.  
There is a limited amount of equipment on which the program can be installed. In 
addition, programs will rely on the fact that Java is installed on the computer.. In 
addition, computers should be connected to the local server in order to have access to the 
random access files. Teachers will be able to use the program on their computer only if it 
is installed on it. Programs will only be able to run in the school environment, and 
therefore home use of the program is not available. Users should be aware of the fact that 
sometimes the server fails and the program will not be able to access the random access 
files.  
Students do not have the same access as teachers do to the program, and can only search 
for clubs. Teachers have to input their name and password if they want to delete or create 
clubs. 
Finally, it will be an effort of ALL SIDES in order to actually use the program 
successfully. That is, if teachers will not bother to put in their clubs into the program, the 
whole point of the program will be lost. And if students do want to find out about clubs, 
they WILL have to actually search for them and not be lazy about it. Therefore, while the 
program might end up being very good, it is up to the school community to take the 
advantage of the program and decide to switch from the annoying bulletin, parent portal 
and wall advertisements to a simple yet effective local intranet program.  



   

B1 

Part B –Student Club and Organizations Database 
 

Data Structures 
 
 
My program will have three data structures: 

- Text File 
- Random Access File 
- Linked List 

 
Text File 
This will be a normal text file in which I will store my teacher accounts. The teacher 
accounts consist of their name and passwords. The addition of teacher accounts will only 
be able to be done by the administrator of the program. This will be stored on a server 
meaning every teacher can log in whenever they want to from whatever machine as long 
as the program is installed and they have an account. Text files are easy to use, 
nevertheless, at the same time, they are not very useful. As they are sequential and for big 
amounts of data are pretty much useless. While I could have used a random access file 
for this, I decided, for the sake of simplicity, to go with a text file, as the amount of data I 
am dealing here with is very small. This does mean though that the text file could be 
abused really easily by any user, which is not a good thing. Nevertheless, since I already 
had a random access file, I decided to go with a text file.  
This is an example of a part of my text file.  

 
The first two lines à George Taylor, wackwackduck are one teacher profile. The teacher 
George Taylor has the password wackwackduck. 
It goes on, repeating name and password, name and password. 
There is nothing special about the text file, as it is easy to use it, add and remove lines 
from it and to read it. When the teacher logs-in, they will have to enter their name and 
password. If they do not have a teacher account, or if they have typed in their name or 
password incorrectly, they will not be able to sign in as the program will not be able to 
verify what they have entered with the existing teacher profiles inside of the text file.  
The program checks the name of the teacher and checks in the text file. If it finds a 
corresponding name, it will read the next line and then see if the password the teacher has 
entered corresponds with the password in the text file.The administrator will be the one 
adding the teacher profile to the text file. No one else will have access to it.  
 

George Taylor 
wackwackduck 
Lauren Sinta 
ger2448tth 
Daniel Radcliffe 
quidditch2 
… 
… 
…. 



   

B2 

Random Access File 
The random access file will be used to store the clubs data. 
Each record will consist of 300 bytes, with the following breakdown: 
      Name of club – 50 bytes 
      Day –  10 bytes  
      Organizer – 30 bytes 
      Email – 60 bytes 
      Grade – 10 bytes 
      Location – 20 bytes 
      Type - 20 bytes 
      Description – 100 bytes 
All fields are stored at UTF strings.  

 
 
The random access file will be stored on the server, meaning all the users can use it (the 
programs will access it). When a teacher updates a club, since there is only one random 
access file which sits on the server, all of the programs (that are installed on different 
computers) will use it, and therefore will be affected. 
Random access made the most sense in this case. I do not see what other data type I could 
have used. Text files are not good as I am dealing with quite a bit of information here. 
The difficult thing about random access file is not the adding, as that will be done at the 
end of the file at every case, but the deleting of data from the file. As I need to keep track 
of the records. Some records might not be exactly 300 bytes, and some might exceed (in 
which case I need to make sure they do not otherwise my whole system is ruined and 
there will be an error). While deleting from the random access file I need to make sure I 
move a record up to replace the empty place I have created. 

Yoga 
M 
Roger Smith 
Roger.smit@fis.edu 
6-12 
Gym 
Sport 
Yoga for beginners.  
 
Art 
Th 
Yaniv Levi 
Levi@fis.edu 
9-12 
Art Studio 
Art for beginners 

Record 1 

Record 2 

mailto:Roger.smit@fis.edu
mailto:Levi@fis.edu


   

B3 

 
Link List 
The link list will be used for searches. That is, when a search is being made, the data will 
be stuck inside of a linked list and only then will be displayed on the screen. I’ve done 
this in this way since I thought it was a good idea. Not only does it allow me to do more 
things with the results, but it means that if in the future I would want to somehow add 
more functions to the search algorithms I will not have to change a lot of code. The link 
list is my ADT. 
Link lists are also not very hard to code. Keeping track of the head and the tail is 
important, but they allow a lot of flexibility, considering the fact that they are not 
permanent.  
Link lists work on the idea that there is a node, with data in it, which points to a new 
node. This allows me to add in data whenever I want to, in whatever order – since it is 
not sequential, but random access. This is useful for programming a search, as can be 
seen in my examples. If someone decides to make a search I would just display it, I 
would display a result, and then display another one. This way, I have a link list and all I 
need to do is display it. This is good in case I have more algorithms that my link list 
might go through in the future. As I mentioned, if I wouldn’t have used a link list I would 
have not user a data type at all for my searches, since I couldn’t think of any other data 
type to fit this problem.  
The link list usually looks like this: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Node 1: Pointers: First Node, Last Node 
 
If added: 
 
Node 1: Pointers: First node, next node 
Node 2: Pointers: Last node 
 
If added: 
 
Node 1: Pointers: First node, next node 
Node 2: Pointers: next node 
Node 3: Pointers: Last node 
Etc… 



   

B4 

Nevertheless, the nodes include data, and therefore an example of this might be: 

 
 
Adding to a link list is not that hard. I just need to take the last pointed and point it to my 
new node. Nevertheless the tricky part about this is that I always need to make sure my 
tail pointer is actually pointing as my tail. Keeping track of the head pointer is easy, as it 
rarely changes, and it if does, all I need to go is make sure the head pointer points to the 
next node after the current head node, which is only 2 or 3 code lines. 
Deleting from a link list is also quite tricky as I have to make sure I’m keeping track of 
the correct nodes. The good thing about this though is that once I actually know where 
my pointers are pointing it, all I need to do is change the pointers and whatever I did not 
need it deleted. 
 
 
 
 
 
 
 
 
 
 

Node 1: First node, String name = Art, String organizer = Smith Robert, String 
location = art studio, String grade = 6, String day = M, String description = art for 
6th grade, next node 
Node 2: String name = Indoor Soccer, String organizer = Paul Thomson, String 
location = gym, String grade = 10-12, String day = S, String description = indoor 
soccer for beginners, next node 
Node 3: String name = Yoga, String organizer = Ohm Levi, String location = 
foyer, String grade = adults, String day = T, String description = yoga for adults. 
Last node. 



   

B5 

Modular Organization 
On the following page is the chart for my modular organization. Notice how it begins 
with the classes and ends with their primal functions. The boxes marked as grey are the 
classes. The chart outlines how the classes are connected to each other, and which classes 
are extending others. All of the methods are obviously not outlined; nevertheless, the 
important functions such as deleting clubs or adding them are a part of the modular 
organization and are therefore included. Data structures are also outlined. 
When looking at the modular organization chart, there is a key that might be of use to 
fully understand the chart.  



   

B6 

Modular Organization

Main Class 

Teacher Interface Student Interface 

Delete Club Create New Club 

Display Clubs Search for Clubs 

Admin Interface 

Random Access File 
LinkList 

Create Teacher 
Profile 

Text File 
Delete All 

Club 

Count All 
Clubs 

View 
Teacher 
Profiles 

Key 
 
  Extends 
 
           Can do this, or is 
connected to (opens or 
uses) 
 
 Class 
 

Data Structure 
 
 



   

B7 

Classes 
My classes consist of: 
Student, teacher, admin, search, new club and link list. 
My admin class extends my teacher class which extends my student class. This makes a 
lot of sense if you think about it. The admin has all the rights the teacher does, 
nevertheless the teacher has fewer rights than the admin and the student has the least 
rights out of the three. This is reflected by how they extend each other, meaning that the 
admin class inherits all of the student and teacher objects, but I can add things to it that 
the other two classes cannot do, which is very appropriate to my program. 
My new club class was done separately because it consists of lots of objects and also has 
to access the random access file and therefore I thought it would be best to create its own 
separate class. 
My search class is done as a class so that my three types of user’s à admin, teachers and 
students can all access the same class as the search functions do not defer for them. 
My link list is done as its own separate class as it is an abstract data type.  
 
Data Types 
The three data types are outlined in my modular organization. It is now possible to see 
what parts of my program access and use each of the different data type. 
Notice how my random access file is connected to the link list. This is because only by a 
search it is possible to get a linked list in my program. That is, when a search is being 
done, it will access the random access file through which the link list is created.  
As outlined, the text file can only be accessed by the admin class. 
 
Methods 

It is not possible to outline every single method in my program; nevertheless, the 
methods outlined in my modular organization are the major methods that create the major 
parts of my program. For example, my delete methods and my display methods. The 
display and delete method consist of an important part of my program that actually affect 
what the user sees and how the user interacts with the program. My display method is not 
in any way connected to my link list method as the display method is not the display 
method for the search. The link list class has a display method which displays it 
separately from the normal display method, which can not be used in my search class.  



   

B8 

 
Hierarchical Classes and Algorithm Pseudocode 

 
Main Class (extends EasyApp) 
This is the main class. Will allow the user to enter into the splash screen, where the 
options for student, teacher or admin is. 
Algorithms that will be used here:  
 
Sign(String valid) 

This method will validate the master password (which doesn't change and is 
programmed into the program) 
   Before: splash screen is present 
   After: password is validated for teacher, creates new teacher class and disposes 
the splash screen 
   Parameters: password entered 
 
    
   Pseudocode 
   Compares the valid string (parameter) to the "master password"  
   If it is the same, creates new teacher class 
   If it is not the same, gives error to user 
  

signT(String name, String password) 
The signT(teacher) method is the signing in method for the teachers. A teacher 
can only sign in if they have  
   An account. This can be created in the Admin section of the program. 
   When a teacher signs in they have to put in their password and they have to put 
in their name.  
   This method checks whether or not their name/password combination is correct. 
    
   Before: teacher hasn't signed in 
   After: teacher has been signed in, or has been denied access to the programmed 
   Parameters: name and password 
    
   Pseudocode: 
   Open the file. 
   Loop through the file, look for name of teacher 
      If found, compare the two passwords 
         If they are the same, sign the teacher if 
         If they are incorrect, do nothing.     
    

 
 
 
 
 



   

B9 

Student Class (extends EasyApp) 
The student class is a simple class on which the admin class and teacher class are relied 
upon.  
 
Display() 

This method is a method to display the clubs from the random access file.  
   It will display the clubs onto an Area Field 
 
   Before: the area field is empty 
   After: the area field has all the clubs displayed 
    
   Pseudocode: 
   Open random access file 
   Loop through file, seeking to all of the names of the clubs 
   Read the name of clubs 
   Displays the name of club 
   Go to next line, display next name of club 
   Close random access file    

 
Teacher Class (extends User) 
Teachers can delete and create clubs.  
 
Delete(String name,String organizer) 

This method will allow the user to delete a club. For this, they will need to enter 
the name of the club 
   exactly like it appears in the random access file.  
    
   parameter: name of club 
   before: the club is still in the random access file, there is a random access file 
   after: the club is erased, the random access file exists.  
    
   Loop through file 
   read the name of each record 
   if its the right name 
   move all subsequent records up one position 
         go to position x(record) + 1 
         read the stuff from there 
         copy to position x - 1 
         repeat until there is nothing to copy anymore 
      if club is at last position 
      delete the club at last position 
 

 
 
 
 



   

B10 

Admin Class (extends Teacher) 
Administrators have a lot more rights than students and teacher.  
 
DisplayTeacher() 

The display Teachers method will be used by the admin to the find the passwords 
of all the teachers. 
   This could be used if the teacher has forgotten their password. 
   Before: there must be a text file with teachers and passwords 
   After: the passwords and the teachers are displayed. 
    
   Pseudocode: 
   read the file 
   read name of teacher 
   read password 
   display them 
   go on until file is done 

 
deleteAll() 

The delete all method will allow the administrator to delete all of the content of 
the random 
   access file in one click. This is in case the year is over and there is definitely not 
going to be any use for the current list anymore. 
   Before: the random access file has content in it 
   After: the random access file has no content in it 
    
   Pseudocode: 
   Open up random access file 
   Set length to zero 

 
CountAllClubs() 

This method is a very simple method to count all the clubs in the random access 
file. 
   The administrator might use it in order to quickly check how many clubs were 
added since the last time 
   he checked the program. 
    
   Pseudocode: 
   Open random access file 
   Count all the clubs 
   Display the count 
 



   

B11 

CheckDuplicate(String name, String password) 
This method checks whether or not the administrator is trying to add in a teacher 
profile that already exists.  
   Before: teacher has not been checked for duplicated 
   After: teacher has been checked for duplicated 
   Parameters: name, password 
    
   Pseudocode: 
   Open up file 
   Compare all the teacher names to the name in the parameter 
   If it is the same 
      Do not let them add it 
   If it is different 
      Execute the add nprofile method 

 
Nprofil(String name, String password) 

This method writes in a new profile for the teachers. 
   Before: there is no new teacher profile 
   After: there is a new teacher profile 
   Parameters: Name of profile and password 
    
   Pseudocode: 
   Open file 
   Write in the name, password 
   Close file    

 
 
New Club Class 
 
The Clubs will have their own Class. 
This class will include the following: 
String name – name of club 
String time – String for the time and date of the club 
String organizer – String for the name of the organizer of the club 
String email – String for the email of the club organizer  
String grade – String for the grade and class of the potential students  
String location – String for the location of the club 
String description – String for the description of the club 
String type – String for the type of club 
 
All of this will be stored in the random access file. Each String will be a filed in the 
whole record. Each club will be one record.  
 



   

B12 

validate(String name, String day, String organizer, String email, String grade, String 
location, String type, String description) 

   I need to make a method in order to validate the email. I'm doing this because it 
is easy to make 
   a mistake when it comes to typing in the day. The day has to be in a special 
format (in this case it has to be a letter/number to represent the day it is on 
    
   Before: the user puts in the day of the club 
   After: the program checks whether the day is correct 
   Parameters: day of clubs 
    
   Pseudocode:  
         user inputs the day of clubs in the form of a string 
         program checks if the length of the string is smaller than 1 
            if it is smaller than one, it tells user to try again  
            deletes the last node 
         else, the program checks if the length is bigger than one 
            if it is bigger than one, it tells user to try again 
            deletes the last nodes 
 

addNewClub(String name, String day, String organizer, String email, String grade, String 
location, String type, String description) 

   This creates a new club 
   There are around 100-200 clubs in the school. 
   Parameters: 
   Each club has the following fields in their record: 
      Name – 50 bytes 
      Day –  10 bytes  
      Organizer – 30 bytes 
      Email – 60 bytes 
      Grade – 10 bytes 
      Location – 20 bytes 
      Type - 20 bytes 
      Description – 100 bytes 
   Therefore, one club will have a total of 300 bytes. If there are around 100-200 
   clubs, the random access file will need to be around 6000 bytes.  + 200*2 = 400 
   6000+400 = 6400    
    
   Before: There is a random access file, main program has decided that this is not 
a duplicate 
   After:  There is a random access file with a new club 
    
   Pseudocode 
   seek to the end of file 
   write in data - add new club 



   

B13 

LinkList Class 
 

Data structures: 
Link list: in order to search through all clubs, a link list of all the clubs will be made. This 
will allow an easy search for the search. The nodes will include name of the club and 
their location in the file (so that when a club is pressed the program will seek to that 
specific position in order to retrieve all the information and display it on the screen).  
 
add(String Lclub,String Lday,String Lorganizer,String Lemail,String Lgrade,String 
Llocation,String Ltype,String Ldescription) 

   The add method adds another node to the linklist 
   Parameters: String Lclub 
   String Lday 
   String Lorganizer 
   String Lemail 
   String Lgrade 
   String Llocation 
   String Ltype 
   String Ldescription 
    
   Pseudocode: 
   if the head is equals to null, add at beginning 
   else, add at end.  

    
removeHead() 

The remove head method removes the head from the linklist 
    
   Pseudocode: 
   if the head is equals to null, print error message 
   else, head = head.next.  
 

removeTail() 
This method reomves the tail from the linklist. 
    
   If the head is equal to null, 
      give error message 
   else if head.next is equal to null, both head and tail are null. 
   else, if head.next.next = null, temp.next = null.  
 

displayNextNode() 
This displayNextNode method displays the next node. 
    
   Pseudocode: 
      if the node is equals to null, it is the head 
   otherwise, node is equal to node.next.  
   return the node.



   

B14 

 
Search Class 
 
Display(LinkList nameList) 

This display method is used to display the nodes from the link list. 
   Before: there is a link list 
   After: linklist is displayed 
   Parameters: linklist 
    
   Pseudocode 
   as long as the next node is not equals to zero, 
      get the node, display it 
      go on to next node 

 
search(String keyword, int amount) 

The search method for a keyword is a bit more complicated.  
   Since it also comes with an int. 
   Before: there must be a random access file 
   After: the correct clubs are displayed 
   Parameters: int for the amount of maximum results, and the string for the 
keyword 
    
   Pseudocode: 
   if amount == 0,  
      search for all the possible results 
      seek to each record 
      make one big string out of it 
      check is the keyword matches any part of it 
      if this is true, stick it in the link list 
   else 
      seek to each record 
      make one big string out of it 
      check is the keyword matches any part of it 
      if this is true, stick it in the link list 
      only display up to the given maximum (int). 
 

searchType(String type) 
This method will be used in order to search for a club through the use of the type 
based search. 
   Before: There is a random access file with data in it 
   After: the user has searched and all clubs are displayed 
   Parameter: type 
    
   Pseudocode: 
   Opens the random access file 



   

B15 

   Searches through file and compares the type given in the parameter with the 
type of each record 
   If they are equals 
   Displays that club in the area field 
 

Search(String Day) 
This method will be used in order to search for a club through the use of the day 
based search. 
   Before: The user hasn't searched for anything 
   After: the user has searched and all clubs are displayed 
   Parameter: day 
    
   Pseudocode: 
   Opens the random access file 
   Searches through file and compares the day with anything written in the file 
   If it finds something that looks the same  
   Displays that club in the area field 

 
 



   

B16 

Mastery Factors 
 
Adding to Random Access File My random access file, “clubs.dat”, has a 

method to add clubs to it in the New Club 
class, called addNewClub(). 

Deleting from Random Access File Teachers can delete clubs from the file 
using the delete() method in the teacher 
class. 

Searching in Random Access File Searching in the random access file is done 
in the Search file, and can be done with 
three methods, search(String day), 
search(String word, int amount) and 
searchType(String type).  

Recursion None 
Merging two sorted data-structures None 
Polymorphism In my search class, I have two search 

methods, search(String day) and 
search(String word, int amount). 

Inheritance My admin class extends my teacher class 
which extends my student class.  

Encapsulation In my linklist method, there are private 
nodes that can only be accessed using get 
and set.  

Parsing a text file None 
Hierarchial composite data structure I’ve got linked list, in which each node has 

more than one data record in it. To be more 
precise, each node in my linked list has 6 
strings in it.  

Five SL mastery factors Searching in both random access file and 
normal text file, use of additional libraries, 
user-defined objects, simple selection, 
loops, nested loops, user defined methods 
with parameters. 

ADT # 1 – Add and Retrieve data This will be in my Link List class, 
displayNextNode() and add(). 

ADT # 2 – Handeling Ends Is also in my LinkList class, can be seen in 
removeTail() 

ADT # 3 – Many error-handeling Spread throughout my LinkList class, in 
nearly all of the methods.  

ADT # 4 – All methods, Robust None 
 



C1 

 
Part C – Student Clubs and Organizations Database 

 
Program Listing 

 
   1    import java.awt.*; 
   2    import java.awt.event.*; 
   3    import java.io.*; 
   4    import java.util.*; 
   5  
   6 /*** 
   7  
   8 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
   9 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  10 Student Clubs and Organization Database 
  11 Carmel Kozlov, March 2007, Frankfurt International School 
  12 Microsoft PC, SCEditor, the purpose of this program is to organize and create a good 
database for the school clubs and organizations 
  13 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  14 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  15  
  16 ====================================================== 
  17 ====================================================== 
  18  
  19 MAIN CLASS extends EASYAPP 
  20  
  21 ====================================================== 
  22 ====================================================== 
  23 ***/ 
  24     public class Main extends EasyApp 
  25    {  



C2 

  26        public static void main(String[] args) 
  27       { new Main(); } 
  28     
  29       Menu mMenu = addMenu("Help|Quit"); 
  30     
  31       Label bMain = addLabel("Main Menu",200,50,100,50,this);    
  32     
  33       Button bTeacher = addButton("Teacher",50,100,100,50,this);    
  34       Button bStudent = addButton("Student",50,150,100,50,this); 
  35       Button bAdmin = addButton("Admin",50,200,100,50,this); 
  36     
  37        public Main() 
  38       { 
  39          setBackground(new Color(11,118,53));  
  40          bMain.setBackground(new Color(11,118,53)); 
  41          bMain.setFont(new Font("Arial",1,16)); 
  42       } 
  43        public void actions(Object source,String command) 
  44       { 
  45        
  46          if(command.equals("Help|Quit")) 
  47          { 
  48             System.exit(0); 
  49          } 
  50          if(source == bTeacher) 
  51          { 
  52             try{ //error handling 
  53             String name = input("NAME: (Firstname Lastname)"); 
  54             String mpassword = input("PASSWORD"); 
  55             if(name.length() < 1) 
  56             { output("No name typed, try again");} 



C3 

  57             else if(mpassword.length() < 1) 
  58             {} 
  59             else 
  60             { 
  61                signT(name,mpassword); 
  62             }} 
  63             catch(Exception ex) 
  64             { output("Login failed"); }  
  65          } 
  66          if(source == bStudent) 
  67          { 
  68             this.dispose(); 
  69             new Student(); 
  70          } 
  71          if(source == bAdmin) 
  72          {  
  73             String mpassword = input("PASSWORD"); 
  74             sign(mpassword);  
  75          } 
  76        
  77        
  78       } 
  79        
  80     
  81        public void sign(String valid) 
  82       /**** 
  83       This method will validate the master password (which doesn't change and is 
programmed into the program) 
  84       Before: splash screen is present 
  85       After: passsword is validated for teacher, creats new teacher class and 
disposes the splash screen 



C4 

  86       Parametes: password entered 
  87        
  88        
  89       Pseudocode 
  90       Compares the valid string (parameter) to the "master password"  
  91       If it is the same, creats new teacher class 
  92       If it is not the same, gives error to user 
  93       ****/ 
  94       { 
  95          try 
  96          { 
  97          if(valid.equals("xyz12345")) //the given password 
  98          { this.dispose(); 
  99             new Admin(); 
 100          } 
 101          else 
 102          { 
 103             output("Password is incorrect, please try again"); //error handling 
 104          } 
 105          } 
 106          catch(Exception ex) 
 107          { output("Login failed for Admin"); } 
 108        
 109       } 
 110     
 111        public void signT(String name, String password) //sign teacher 
 112       /** 
 113       The signT method is the signing in method for the teachers. A teacher can only 
sign in if they have  
 114       an account. This can be created in the Admin section of the program. 
 115       When a teacher signs in they have to put in their password and they have to 



C5 

put in their name.  
 116       This method checks whether or not their name/password combination is correct. 
 117        
 118       Before: teacher hasn't signed in 
 119       After: teacher has been signed in, or has been denied access to the programmed 
 120       Parameters: name and password 
 121        
 122       Pseudocode: 
 123       Open the file. 
 124       Loop through the file, look for name of teacher 
 125       If found, compare the two passwords 
 126          If they are the same, sign the teacher if 
 127          If they are incorrect, do nothing.     
 128        
 129       ***/ 
 130       { 
 131          try 
 132          {  
 133             BufferedReader file = new BufferedReader(new 
FileReader("f:\\teacherprofiles.txt")); 
 134             while(file.ready()) 
 135             { 
 136                String Cname = file.readLine(); 
 137                String Cpassword = file.readLine(); 
 138                if(name.equals(Cname)) 
 139                { 
 140                   if(Cpassword.equals(password)) 
 141                   {  
 142                      this.dispose(); 
 143                      new Teacher(name); 
 144                      return; 



C6 

 145                   } 
 146                   else if(!Cpassword.equals(password)) 
 147                   { 
 148                      output("Password incorrect"); 
 149                      return; 
 150                   } 
 151                    
 152                 
 153                 
 154                }             
 155                 
 156             } 
 157             output("Please type in the correct name and password"); 
 158          } 
 159              catch(IOException e) 
 160             { output("Could not sign teacher in, problem with text file"); }  
 161       } 
 162        
 163     
 164    } 
 165  
 



C7 

 166 /** 
 167 =============================================================================== 
 168  
 169 TEACHER CLASS extends STUDENT 
 170  
 171 =============================================================================== 
 172 **/ 
 173  
 174     class Teacher extends Student 
 175    { 
 176       static String name1;  
 177       Button bNew = addButton("Create New Club",50,190,100,50,this); 
 178       Button bDelete = addButton("Delete club",50,240,100,50,this); 
 179     
 180        public Teacher(String Aname) 
 181       { 
 182          setSize(700,400); 
 183          name1 = Aname; 
 184       } 
 185     
 186        
 187        public Teacher() 
 188       { 
 189         
 190       } 
 191     
 192     
 193        public void actions(Object source, String command) 
 194       /** 
 195       The action method allows the user to choose what action or command to doing 
 196       Parameter: object source, string command 



C8 

 197       Before: Nothing is happening 
 198       After: The action takes place 
 199        
 200       Pseudocode: 
 201       method checks what option the user has chosen 
 202       executes the commands in that option 
 203        
 204       ***/ 
 205       { 
 206          if(source == bNew) 
 207          {  
 208             new nClub(); 
 209          } 
 210          if(source == bDelete) 
 211          { 
 212             String organizername = name1; 
 213             String noc = input("Name of club you wish to delete"); 
 214             delete(noc,organizername); 
 215          } 
 216          if(source == bDisplay) 
 217          { 
 218             display(); 
 219          } 
 220          if(command.equals("Help|Quit")) 
 221          { 
 222             System.exit(0); 
 223          } 
 224          if(command.equals("Help|Help")) 
 225          { 
 226             tDisplay.setText("Welcome," + "\n" + "If you would like to make a 
search," + "\n" + "press the search button." + "\n" + "Otherwise, press the display all 



C9 

button" + "\n" + "to see a list of all the clubs that teachers" + "\n" + "have put into 
the system." + "\n" + "If you would like to add" + "\n" + "another club, press the 
'create new club' button." + "\n"+ "Or 'delete club' to delete one."); 
 227          } 
 228          if(command.equals("Help|Back to Main Menu")) 
 229          { 
 230             this.dispose(); 
 231             new Main(); 
 232          } 
 233          if(source == bSearch) 
 234          { 
 235             new Search();   
 236          } 
 237       } 
 238     
 239     
 240     
 241        
 242        public void delete(String name, String organizerB) 
 243       /** 
 244       This method will allow the user to delete a club. For this, they will need to 
enter the name of the club 
 245       extactly like it appears in the random acceess file.  
 246        
 247       parameter: name of club 
 248       before: the club is still in the random access file 
 249       after: the club is erased 
 250        
 251       Loop through file 
 252       read the name of each record 
 253       if its the right name 



C10 

 254       move all subsequent records up one position 
 255          go to position x(record) + 1 
 256          read the stuff from there 
 257          copy to position x - 1 
 258          repeat until there is nothing to copy anymore 
 259       if club is at last position 
 260       delete the club at last position 
 261       **/ 
 262       {  long x; 
 263          try 
 264          { 
 265             RandomAccessFile data = new RandomAccessFile("clubs.dat","rw"); 
 266             long records = (data.length()+299)/300; //gives us the number of records 
 267             for(x = 0;x < records-1; x = x+1) // goes up one record  
 268             { 
 269                data.seek(x*300); //seeks to name 
 270                String clubN = data.readUTF();  
 271                if(clubN.equals(name)) //compared the two names of clubs 
 272                {  data.seek((x*300)+60); 
 273                   String organizerA = data.readUTF(); 
 274                   if(organizerA.equals(organizerB)) //compares the organizers (club 
can only be deleted by whoever created it 
 275                   { 
 276                    
 277                      for(long d = x; d < records-1; d = d+1) 
 278                      { 
 279                         data.seek((x+1)*300); //seeks to position of next club 
(after the one we want delete) 
 280                         String pname = data.readUTF(); // copies the name 
 281                         data.seek(x*300); 
 282                         data.writeUTF(pname); 



C11 

 283                                
 284                         data.seek(((x+1)*300)+50); //seeks to club and copies day, 
then goes back and copies it on the club before 
 285                         String pday = data.readUTF(); 
 286                         data.seek((x*300)+50); 
 287                         data.writeUTF(pday); 
 288                          
 289                         data.seek(((x+1)*300)+60); 
 290                         String porganizer = data.readUTF(); 
 291                         data.seek((x*300)+60); 
 292                         data.writeUTF(porganizer); 
 293                       
 294                         data.seek(((x+1)*300)+90);  
 295                         String pemail = data.readUTF(); 
 296                         data.seek((x*300)+90); 
 297                         data.writeUTF(pday); 
 298                       
 299                         data.seek(((x+1)*300)+150);  
 300                         String pgrade = data.readUTF(); 
 301                         data.seek((x*300)+150); 
 302                         data.writeUTF(pgrade); 
 303                       
 304                         data.seek(((x+1)*300)+160);  
 305                         String plocation = data.readUTF(); 
 306                         data.seek((x*300)+160); 
 307                         data.writeUTF(plocation); 
 308                       
 309                         data.seek(((x+1)*300)+180); 
 310                         String ptype = data.readUTF(); 
 311                         data.seek((x*300)+180); 
 312                         data.writeUTF(ptype); 



C12 

 313                       
 314                         data.seek(((x+1)*300)+200); 
 315                         String pdescription = data.readUTF(); 
 316                         data.seek((x*300)+200); 
 317                         data.writeUTF(pdescription); 
 318                       
 319                         long l = data.length(); 
 320                         data.setLength(l-300);  
 321                         return; 
 322                      }   
 323                    
 324                       output("Your club has been deleted");      
 325                    
 326                   } 
 327                    
 328                    
 329                   else{output("not the same teacher"); } 
 330                } 
 331              
 332             } 
 333             if(x == records-1) //if it is the last club in the file...there is a 
different method of deleting 
 334             {  data.seek(x*300); 
 335                String clubName = data.readUTF();  //checking that they fit...           
 336                data.seek((x*300)+60); 
 337                String organizerA = data.readUTF(); 
 338                if(clubName.equals(name)) 
 339                { 
 340                   if(organizerA.equals(organizerB)) //if they match 
 341                   { 
 342                      data.setLength(x*300); 



C13 

 343                      output("Your club has been deleted"); 
 344                   } 
 345                   else 
 346                   {output("not the same teacher");} 
 347                } 
 348             }   
 349             data.close(); 
 350          } 
 351                 
 352           
 353             
 354              catch (IOException e) 
 355             { output("Could not erase club, please try again"); } 
 356        
 357        
 358       } 
 359              
 360    }  
 361   
  



C14 

362 /*** 
 363 ====================================================== 
 364 ====================================================== 
 365  
 366 Student CLASS extends EASYAPP 
 367  
 368 ====================================================== 
 369 ====================================================== 
 370 ***/ 
 371  
 372     class Student extends EasyApp 
 373    { 
 374       Label welcome = addLabel("Welcome",50,30,75,30,this); 
 375     
 376       Button bDisplay = addButton("Display Clubs",50,70,100,50,this); 
 377       Button bSearch = addButton("Search",50,120,100,50,this);    
 378       TextArea tDisplay = addTextArea("",170,70,500,300,this); 
 379     
 380       Menu mMenu = addMenu("Help|Help|Back to Main Menu|Quit"); 
 381        
 382        
 383        public Student()  
 384       { 
 385          setBackground(new Color(11,118,53)); 
 386          welcome.setBackground(new Color(11,118,53)); 
 387          welcome.setFont(new Font("Arial",1,16)); 
 388          setSize(700,400); 
 389       } 
 390        public void actions(Object source, String command) 
 391       {       
 392          if(source == bDisplay) 



C15 

 393          { 
 394             display(); 
 395          } 
 396          if(source == bSearch) 
 397          { 
 398             new Search(); 
 399          } 
 400          if(command.equals("Help|Quit")) 
 401          { 
 402             System.exit(0); 
 403          } 
 404          if(command.equals("Help|Help")) 
 405          { 
 406             tDisplay.setText("Welcome," + "\n" + "If you would like to make a 
search," + "\n" + "press the search button." + "\n" + "Otherwise, press the display all 
button" + "\n" + "to see a list of all the clubs that teachers" + "\n" + "have put into 
the system."); 
 407          } 
 408          if(command.equals("Help|Back to Main Menu")) 
 409          { 
 410             this.dispose(); 
 411             new Main(); 
 412          } 
 413        
 414       } 
 415     
 416        public void display() 
 417       /** 
 418       This method is a method to display the clubs from the random access file.  
 419       It will display the clubs onto an Area Field 
 420        



C16 

 421       Before: the area field is empty 
 422       After: the area field has all the clubs displayed 
 423        
 424       Pseudocode: 
 425       Open random access file 
 426       Loop through file, seeking to all of the names of the clubs 
 427       Read the name of clubs 
 428       Displays the name of club 
 429       Go to next line, display next name of club 
 430       Close random access file    
 431        
 432       **/ 
 433       { 
 434          tDisplay.setText(""); 
 435          try 
 436          { 
 437             RandomAccessFile data = new RandomAccessFile("clubs.dat","rw"); 
 438             long records = (data.length()+299)/300; 
 439             for(long z = 0; z<records; z = z+1) //goes through all the random access 
file to display all the clubs 
 440             { 
 441                data.seek(z*300); 
 442                String dname = data.readUTF(); 
 443              
 444                data.seek((z*300)+50); 
 445                String dday = data.readUTF(); 
 446              
 447                data.seek((z*300)+60); 
 448                String dorganizer = data.readUTF(); 
 449              
 450                



C17 

 451                data.seek((z*300)+90);  
 452                String demail = data.readUTF(); 
 453                 
 454                data.seek((z*300)+150);  
 455                String dgrade = data.readUTF(); 
 456                 
 457                data.seek((z*300)+160);  
 458                String dlocation = data.readUTF(); 
 459                 
 460                data.seek((z*300)+180); 
 461                String dtype = data.readUTF(); 
 462              
 463                data.seek((z*300)+200); 
 464                String ddescription = data.readUTF(); 
 465                 
 466                String t = tDisplay.getText() + "\n" + "Name of Club: "+dname + "\n" 
+ "Day: "+ dday + "\n" + "Organizer: " +dorganizer + "\n" + "Contact Email: " + demail + 
"\n" + "For ages: " + dgrade + "\n" +  "Location: " +dlocation + "\n" + "Type of Club: " 
+ dtype + "\n" + "Description: "+ ddescription + "\n" + "\n"; 
 467                tDisplay.setText(t); 
 468              
 469              
 470              
 471             } 
 472             data.close(); 
 473          } 
 474              catch(IOException e) 
 475             {output("error in displaying clubs"+e.toString()); } 
 476        
 477        
 478        



C18 

 479       } 
 480    } 
 481  
 482  
  



C19 

483 /*** 
 484 ====================================================== 
 485 ====================================================== 
 486  
 487 New Club CLASS extends EASYAPP 
 488  
 489 ====================================================== 
 490 ====================================================== 
 491 ***/ 
 492     class nClub extends EasyApp 
 493    { 
 494       Label lMain = addLabel("Creating a New Club",200,50,200,50,this);  
 495       Label lday = addLabel("Day:",30,100,70,30,this); 
 496       Label lname = addLabel("Name:",30,130,70,30,this); 
 497       Label lemail = addLabel("Email:",30,160,70,30,this); 
 498       Label lgrade = addLabel("Grades:",30,190,70,30,this); 
 499       Label llocation = addLabel("Location:",30,220,70,30,this); 
 500       Label ltype = addLabel("Type:",30,250,70,30,this); 
 501       Label ldescription = addLabel("Description:",30,280,70,30,this); 
 502     
 503     
 504       Choice tday = addChoice("- DAY -|M|T|W|Th|F|S",110,100,300,30, this); 
 505       TextField tname = addTextField("", 110, 130, 300, 30, this); 
 506       TextField temail = addTextField("", 110, 160, 300, 30, this); 
 507       TextField tgrade = addTextField("", 110, 190, 300, 30, this); 
 508       TextField tlocation = addTextField("", 110, 220, 300, 30, this); 
 509       Choice ttype = addChoice("- TYPE -
|Art|Sport|Drama|Service|Intellectual|Music|Other",110,250,300,30,this); 
 510       TextField tdescription = addTextField("", 110, 280, 300, 30, this); 
 511     
 512       Button bsave = addButton("SAVE!", 450,200,70,50,this); 



C20 

 513       Button bquit = addButton("Cancel",450,250,70,50,this); 
 514     
 515        public nClub() 
 516       { 
 517          setBackground(new Color(11,118,53)); 
 518          lday.setBackground(new Color(11,118,53)); 
 519          lname.setBackground(new Color(11,118,53)); 
 520          lemail.setBackground(new Color(11,118,53)); 
 521          lgrade.setBackground(new Color(11,118,53)); 
 522          llocation.setBackground(new Color(11,118,53)); 
 523          ldescription.setBackground(new Color(11,118,53)); 
 524          ltype.setBackground(new Color(11,118,53)); 
 525          lMain.setBackground(new Color(11,118,53)); 
 526          lMain.setFont(new Font("Arial",1,16)); 
 527       } 
 528     
 529        public void actions(Object source, String command) 
 530       { 
 531          if(source == bsave)//the following code checks that all of the strings 
actually make some sort of sense, rather then just  
 532          //copying in to the random access file an empty string 
 533          {  
 534             String name = tname.getText(); 
 535             String day = tday.getSelectedItem(); 
 536             String organizer = Teacher.name1; 
 537             String email = temail.getText(); 
 538             String grade = tgrade.getText(); 
 539             String location = tlocation.getText(); 
 540             String type = ttype.getSelectedItem(); 
 541             String description = tdescription.getText(); 
 542             if(description.length() > 98) 



C21 

 543             { 
 544                String answer = input("Description is too long. If you proceed, your 
description will be forced to be shorter. Do you want to proceed?"); 
 545                if(answer.equalsIgnoreCase("yes") ||answer.equalsIgnoreCase("y") ) 
 546                { 
 547                   description = description.substring(0,98); 
 548                   validate(name,day,organizer, email, grade, location,type, 
description);  
 549                   this.dispose(); 
 550                } 
 551              
 552             } 
 553             if(name.length() < 1) 
 554             { 
 555                output("Please write a name for the club"); 
 556             } 
 557             if(day.equals("-DAY-")) 
 558             { 
 559                output("Please select a day"); 
 560             } 
 561             if(grade.length() < 1) 
 562             { 
 563                output("Please type in a valid grade (e.g. 9-12)"); 
 564             } 
 565             if(location.length() < 1) 
 566             { 
 567                output("Please type in a location"); 
 568             } 
 569             if(type.equals("- TYPE -")) 
 570             { 
 571                output("please select type"); 



C22 

 572             } 
 573             else 
 574             { 
 575              
 576                validate(name,day,organizer, email, grade, location,type, 
description);  
 577                this.dispose(); 
 578             } 
 579           
 580          } 
 581          if(source == bquit) 
 582          { this.dispose(); } 
 583        
 584       } 
 585     
 586        public void validate(String name, String day, String organizer, String email, 
String grade, String location, String type, String description) 
 587       /** 
 588       I need to make a method in order to validate the email. I'm doing this because 
it is easy to make 
 589       a mistake when it comes to typing in the day. The day has to be in a special 
format (in this case it has to be a letter/number to represent the day it is on 
 590        
 591       Before: the user puts in the day of the club 
 592       After: the program checks whether the day is correct 
 593       Parameters: day of clubs 
 594        
 595       Pseudocode:  
 596          user inputs the day of clubs in the form of a string 
 597          program checks if the length of the string is smaller than 1 
 598             if it is smaller than one, it tells user to try again  



C23 

 599             deletes the last node 
 600          else, the program checks if the length is bigger than one 
 601             if it is bigger than one, it tells user to try again 
 602             deletes the last nodes 
 603       **/ 
 604       {      
 605        
 606          if(email.indexOf(" ") > -1) 
 607          {output("There can't be any blank spaces in the email address");} 
 608          else if(email.indexOf("@") < 2) 
 609          {output("Email is not valide, please try again");} 
 610          else //if the email is validated, it will add it  
 611          {addNewClub(name,day,organizer,email,grade,location,type,description);} 
 612       } 
 613        
 614        public void addNewClub(String name, String day, String organizer, String 
email, String grade, String location, String type, String description) 
 615       /***** 
 616       This creats a new club 
 617       There are around 100-200 clubs in the school. 
 618       Parameters: 
 619       Each club has the following fields in their record: 
 620       Name – 50 bytes 
 621       Day –  10 bytes  
 622       Organizer – 30 bytes 
 623       Email – 60 bytes 
 624       Grade – 10 bytes 
 625       Location – 20 bytes 
 626       Type - 20 bytes 
 627       Description – 100 bytes 
 628       Therefore, one club will have a total of 300 bytes. If there are around 100-



C24 

200 
 629       clubs, the random access file will need to be around 6000 bytes.  + 200*2 = 
400 
 630       6000+400 = 6400    
 631        
 632       Before: There is a random access file, main program has decided that this is 
not a duplicate 
 633       After:  There is a random access file with a new club 
 634        
 635       Pseudocode 
 636       seek to the end of file 
 637       write in data - add new club 
 638       *****/ 
 639       { 
 640          try 
 641          { 
 642           
 643             RandomAccessFile data = new RandomAccessFile("clubs.dat","rw"); 
 644             long records = (data.length()+299)/300; 
 645             long lengthOfFile = data.length(); 
 646             if(lengthOfFile > 0) 
 647             { 
 648                for(int z = 0; z< records; z = z+1) 
 649                { 
 650                   data.seek(z*300); 
 651                   String nameofexistingclub = data.readUTF(); 
 652                   if(name.equalsIgnoreCase(nameofexistingclub)) 
 653                   { 
 654                      output("This club exists"); 
 655                   } 
 656                   else 



C25 

 657                   { 
 658                      data.seek(records*300); //writes the name of the club 
 659                      data.writeUTF(name); 
 660                    
 661                      data.seek((records*300)+50); // writes the day 
 662                      data.writeUTF(day); 
 663                    
 664                      data.seek((records*300)+60); // writes the name of the 
organizer 
 665                      data.writeUTF(organizer); 
 666                    
 667                      data.seek((records*300)+90); //writes the email address of the 
organizer 
 668                      data.writeUTF(email);  
 669                    
 670                      data.seek((records*300)+150); //writes the grade 
 671                      data.writeUTF(grade); 
 672                    
 673                      data.seek((records*300)+160); //writes the location 
 674                      data.writeUTF(location); 
 675                    
 676                      data.seek((records*300)+180); //writes type 
 677                      data.writeUTF(type); 
 678                    
 679                      data.seek((records*300)+200); //writes the description 
 680                      data.writeUTF(description); 
 681                       
 682                      output("Your club has been added"); 
 683                   } 
 684                }} 
 685             else 



C26 

 686             {            
 687                data.seek(records*300); //writes the name of the club 
 688                data.writeUTF(name); 
 689              
 690                data.seek((records*300)+50); // writes the day 
 691                data.writeUTF(day); 
 692              
 693                data.seek((records*300)+60); // writes the name of the organizer 
 694                data.writeUTF(organizer); 
 695              
 696                data.seek((records*300)+90); //writes the email address of the 
organizer 
 697                data.writeUTF(email);  
 698              
 699                data.seek((records*300)+150); //writes the grade 
 700                data.writeUTF(grade); 
 701              
 702                data.seek((records*300)+160); //writes the location 
 703                data.writeUTF(location); 
 704              
 705                data.seek((records*300)+180); //writes type 
 706                data.writeUTF(type); 
 707              
 708                data.seek((records*300)+200); //writes the description 
 709                data.writeUTF(description); 
 710                 
 711                output("Your club has been added"); 
 712             } 
 713           
 714           
 715           



C27 

 716             data.close(); 
 717          } 
 718              catch (IOException e) 
 719             { System.out.println("Error while trying to add new club"); } 
 720        
 721       } 
 722     
 723    } 
 



C28 

 724 /*** 
 725 ====================================================== 
 726 ====================================================== 
 727  
 728 SEARCH CLASS extends EASYAPP 
 729  
 730 ====================================================== 
 731 ====================================================== 
 732 ***/ 
 733  
 734     class Search extends EasyApp 
 735    { 
 736        public Search() 
 737       {  setBackground(new Color(11,118,53)); 
 738          lHello.setBackground(new Color(11,118,53)); 
 739          lHello.setFont(new Font("Arial",1,16)); 
 740          Search1.setBackground(new Color(11,118,53)); 
 741          Search2.setBackground(new Color(11,118,53)); 
 742          Search3.setBackground(new Color(11,118,53)); 
 743          amount.setBackground(new Color(11,118,53)); 
 744          setSize(700,400); 
 745       } 
 746     
 747     
 748     
 749       Label lHello = addLabel("Search for Clubs",200,50,200,50,this); 
 750       Label Search1 = addLabel("Search by KeyWord:",50,100,120,30,this); 
 751       Label Search2 = addLabel("Search by Type:",50,200,120,30,this); 
 752       Label Search3 = addLabel("Search by Day:",50,265,120,30,this); 
 753     
 754       Button bSearch = addButton("Enter KeyWord",50,135,100,30,this); 



C29 

 755       Button bQuit = addButton("Exit",610,300,70,30,this); 
 756       Button bGo1 = addButton("!",125,237,20,20,this); 
 757       Button bGo2 = addButton("!",125,302,20,20,this); 
 758     
 759       TextArea tMain = addTextArea("",200,100,400,250,this); 
 760           
 761       Choice tChoice = addChoice("- TYPE -
|Art|Sport|Drama|Service|Intellectual|Other",50,235,70,50,this); 
 762       Choice tChoicea = addChoice("- DAY -|M|T|W|Th|F|S",50,300,70,50,this); 
 763       Choice tChoiceb = addChoice("-ALL-|1|5|10|20|100|",100,165,70,50,this); 
 764     
 765       Label amount = addLabel("results:",50,165,120,30,this); 
 766       Menu mMenu = addMenu("Help|Help|Back to Main Menu|Quit"); 
 767     
 768     
 769     
 770     
 771        public void actions(Object source, String command) 
 772       { 
 773          if(source == bSearch) 
 774          {  try  
 775             { 
 776             String searchWord = input("KeyWord:"); 
 777             if(searchWord.length() < 1) 
 778             { 
 779                output("Please type in a KeyWord"); 
 780             } 
 781             else 
 782             { 
 783                int sAmount; 
 784                String amount = tChoiceb.getSelectedItem();  



C30 

 785                if(amount.equals("-ALL-")) 
 786                {sAmount = 0;} 
 787                else 
 788                {sAmount = Integer.parseInt(amount);} 
 789                search(searchWord,sAmount); 
 790             } 
 791             } 
 792             catch(Exception ex) 
 793             { 
 794                output("KeyWord search failed");  
 795             } 
 796          } 
 797          if(source == bQuit) 
 798          { this.dispose();} 
 799          if(source == bGo1) 
 800          { 
 801             String type1 = tChoice.getSelectedItem(); 
 802             if(type1.equals("- TYPE -")) 
 803             { 
 804               tMain.setText("Please select a type"); 
 805             } 
 806             else 
 807             {searchType(type1);} 
 808          } 
 809          if(source == bGo2) 
 810          {   
 811             String day1 = tChoicea.getSelectedItem(); 
 812             if(day1.equals("- DAY -")) 
 813             { tMain.setText("Please select a day") ; } 
 814             else 
 815             { 



C31 

 816                search(day1); 
 817             }                
 818          } 
 819          if(command.equals("Help|Quit")) 
 820          { 
 821             System.exit(0); 
 822          } 
 823          if(command.equals("Help|Help")) 
 824          { 
 825             tMain.setText("Search by day, keyword or type of club." + "\n" + "Choose 
the maximum amount of results" + "\n" + "when conducting a keyword based search."); 
 826          } 
 827          if(command.equals("Help|Back to Main Menu")) 
 828          { 
 829             this.dispose(); 
 830             new Main(); 
 831          } 
 832        
 833       } 
 834     
 835        public void display(LinkList nameList) 
 836       /** 
 837       This display method is used to display the nodes from the link list. 
 838       Before: there is a link list 
 839       After: linklist is displayed 
 840       Parameters: linklist 
 841        
 842       Pseudocode 
 843       as long as the next node is not equals to zero, 
 844       get the node, display it 
 845       go on to next node 



C32 

 846       **/ 
 847       {  
 848          tMain.setText(""); 
 849          Node info = nameList.displayNextNode(); 
 850          while(info != null) 
 851          { 
 852             tMain.setText(tMain.getText()+"Name of club: "+info.name+"\n" + "Day: 
"+info.day+"\n"+"Organizer: "+info.organizer +"\n"+"Email: "+info.email+"\n" + "Grade: 
"+info.grade+"\n"+"Location: "+info.location+"\n"+"Type: "+info.type+"\n"+"Description: 
"+info.description+"\n"+"\n"); 
 853             info = nameList.displayNextNode(); 
 854          } 
 855       } 
 856     
 857        public void search(String keyword, int amount) 
 858       /** 
 859       The search method for a keyword is a bit more complicated.  
 860       Since it also comes with an int. 
 861       Before: there must be a random access file 
 862       After: the correct clubs are displayed 
 863       Parameters: int for the amount of maximum results, and the string for the 
keyword 
 864        
 865       Pseudocode: 
 866       if amount == 0,  
 867       search for all the possible results 
 868       seek to each record 
 869       make one big string out of it 
 870       check is the keyword mathches any part of it 
 871       if this is true, stick it in the link list 
 872       else 



C33 

 873       seek to each record 
 874       make one big string out of it 
 875       check is the keyword mathches any part of it 
 876       if this is true, stick it in the link list 
 877       only display up to the given maximum (int). 
 878       **/ 
 879       { 
 880        
 881          int bAmount = 0; 
 882          LinkList nameSearch = new LinkList(); 
 883          try 
 884          { 
 885             RandomAccessFile data = new RandomAccessFile("clubs.dat","rw"); 
 886             long records = (data.length()+299)/300; 
 887             if(amount == 0) 
 888             { 
 889                for(long z = 0; z<records; z = z+1) 
 890                { 
 891                   data.seek(z*300); //writes the name of the club 
 892                   String Lclub = data.readUTF(); 
 893                 
 894                   data.seek((z*300)+50); // writes the day 
 895                   String Lday = data.readUTF(); 
 896                 
 897                   data.seek((z*300)+60); // writed the name of the organizer 
 898                   String Lorganizer = data.readUTF(); 
 899                 
 900                   data.seek((z*300)+90); //writes the email address of the organizer 
 901                   String Lemail = data.readUTF();  
 902                 
 903                   data.seek((z*300)+150); //writes the grade 



C34 

 904                   String Lgrade = data.readUTF(); 
 905                 
 906                   data.seek((z*300)+160); //writes the location 
 907                   String Llocation = data.readUTF(); 
 908                 
 909                   data.seek((z*300)+180); //writes type 
 910                   String Ltype = data.readUTF(); 
 911                 
 912                   data.seek((z*300)+200); //writes the description 
 913                   String Ldescription = data.readUTF(); 
 914                 
 915                   String compare = 
Lclub+"/"+Lday+"/"+Lorganizer+"/"+Lemail+"/"+Lgrade+"/"+Llocation+"/"+Ltype+"/"+Ldescript
ion; //stick them all in one string 
 916                   compare = compare.toUpperCase(); 
 917                   keyword = keyword.toUpperCase(); 
 918                   int position = compare.indexOf(keyword); 
 919                   if(position <0) 
 920                   {} 
 921                   else 
 922                   
{nameSearch.add(Lclub,Lday,Lorganizer,Lemail,Lgrade,Llocation,Ltype,Ldescription);} 
 923                } 
 924             } 
 925              
 926             else 
 927             { 
 928                for(long z = 0; z<records; z = z+1) 
 929                { 
 930                   data.seek(z*300); //writes the name of the club 
 931                   String Lclub = data.readUTF(); 



C35 

 932                 
 933                   data.seek((z*300)+50); // writes the day 
 934                   String Lday = data.readUTF(); 
 935                 
 936                   data.seek((z*300)+60); // writed the name of the organizer 
 937                   String Lorganizer = data.readUTF(); 
 938                 
 939                   data.seek((z*300)+90); //writes the email address of the organizer 
 940                   String Lemail = data.readUTF();  
 941                 
 942                   data.seek((z*300)+150); //writes the grade 
 943                   String Lgrade = data.readUTF(); 
 944                 
 945                   data.seek((z*300)+160); //writes the location 
 946                   String Llocation = data.readUTF(); 
 947                 
 948                   data.seek((z*300)+180); //writes type 
 949                   String Ltype = data.readUTF(); 
 950                 
 951                   data.seek((z*300)+200); //writes the description 
 952                   String Ldescription = data.readUTF(); 
 953                 
 954                   String compare = 
Lclub+"/"+Lday+"/"+Lorganizer+"/"+Lemail+"/"+Lgrade+"/"+Llocation+"/"+Ltype+"/"+Ldescript
ion; //stick them all in one string 
 955                   compare = compare.toUpperCase(); 
 956                   keyword = keyword.toUpperCase(); 
 957                   int position = compare.indexOf(keyword); 
 958                   if(position <0) 
 959                   {} 
 960                   else 



C36 

 961                   {   
 962                      if(amount == bAmount) 
 963                      {} 
 964                      else 
 965                      { tMain.setText(""); 
 966                         bAmount = bAmount+1; 
 967                         
nameSearch.add(Lclub,Lday,Lorganizer,Lemail,Lgrade,Llocation,Ltype,Ldescription); 
 968                      } 
 969                   } 
 970                } 
 971             } 
 972             data.close(); 
 973          } 
 974              catch(IOException e) 
 975             { output("Problem searching for club"); } 
 976           
 977          display(nameSearch); 
 978       } 
 979     
 980        public void searchType(String type) 
 981       /** 
 982       This method will be used in order to search for a club through the use of the 
type based search. 
 983       Before: There is a random access file with data in it 
 984       After: the user has searched and all clubs are displayed 
 985       Parameter: type 
 986        
 987       Pseudocode: 
 988       Opens the random access file 
 989       Searches through file and compares the type given in the parameter with the 



C37 

type of each record 
 990       If they are equals 
 991       Displays that club in the area field 
 992        
 993       **/    
 994       { 
 995          LinkList typeSearch = new LinkList(); 
 996          try 
 997          { 
 998              
 999             RandomAccessFile data = new RandomAccessFile("clubs.dat","rw"); 
1000             long records = (data.length()+299)/300; 
1001             for(long z = 0; z<records; z = z+1) 
1002             { 
1003                data.seek((z*300)+180);  //goes to type 
1004                String ntype = data.readUTF(); 
1005                 
1006                if(ntype.equals(type)) 
1007                {   
1008                   data.seek(z*300); //writes the name of the club 
1009                   String Lclub = data.readUTF(); 
1010                 
1011                   data.seek((z*300)+50); // writes the day 
1012                   String Lday = data.readUTF(); 
1013                 
1014                   data.seek((z*300)+60); // writes the name of the organizer 
1015                   String Lorganizer = data.readUTF(); 
1016                 
1017                   data.seek((z*300)+90); //writes the email address of the organizer 
1018                   String Lemail = data.readUTF();  
1019                 



C38 

1020                   data.seek((z*300)+150); //writes the grade 
1021                   String Lgrade = data.readUTF(); 
1022                 
1023                   data.seek((z*300)+160); //writes the location 
1024                   String Llocation = data.readUTF(); 
1025                 
1026                   data.seek((z*300)+180); //writes type 
1027                   String Ltype = data.readUTF(); 
1028                 
1029                   data.seek((z*300)+200); //writes the description 
1030                   String Ldescription = data.readUTF(); 
1031                  
1032                  
1033                   
typeSearch.add(Lclub,Lday,Lorganizer,Lemail,Lgrade,Llocation,Ltype,Ldescription);   
1034                } 
1035             } 
1036                
1037             data.close(); 
1038          } 
1039              catch(IOException e) 
1040             { output("Problem Searching for day");} 
1041          display(typeSearch); 
1042        
1043        
1044        
1045        
1046        
1047       } 
1048     
1049        public void search(String day) 



C39 

1050       /**** 
1051       This method will be used in order to search for a club through the use of the 
day based search. 
1052       Before: The user hasn't searched for anything 
1053       After: the user has searched and all clubs are displayed 
1054       Parameter: day 
1055        
1056       Pseudocode: 
1057       Opens the random access file 
1058       Searches through file and compares the day with anything written in the file 
1059       If it finds something that looks the same  
1060       Displays that club in the area field 
1061       ****/ 
1062       { 
1063          LinkList daySearch = new LinkList(); 
1064          try 
1065          { 
1066              
1067             RandomAccessFile data = new RandomAccessFile("clubs.dat","rw"); 
1068             long records = (data.length()+299)/300; 
1069             for(long z = 0; z<records; z = z+1) 
1070             { 
1071                data.seek((z*300)+50);  //goes to day 
1072                String nday = data.readUTF(); 
1073                 
1074                if(nday.equals(day)) 
1075                {   
1076                   data.seek(z*300); //writes the name of the club 
1077                   String Lclub = data.readUTF(); 
1078                 
1079                   data.seek((z*300)+50); // writes the day 



C40 

1080                   String Lday = data.readUTF(); 
1081                 
1082                   data.seek((z*300)+60); // writes the name of the organizer 
1083                   String Lorganizer = data.readUTF(); 
1084                 
1085                   data.seek((z*300)+90); //writes the email address of the organizer 
1086                   String Lemail = data.readUTF();  
1087                 
1088                   data.seek((z*300)+150); //writes the grade 
1089                   String Lgrade = data.readUTF(); 
1090                 
1091                   data.seek((z*300)+160); //writes the location 
1092                   String Llocation = data.readUTF(); 
1093                 
1094                   data.seek((z*300)+180); //writes type 
1095                   String Ltype = data.readUTF(); 
1096                 
1097                   data.seek((z*300)+200); //writes the description 
1098                   String Ldescription = data.readUTF(); 
1099                  
1100                  
1101                   
daySearch.add(Lclub,Lday,Lorganizer,Lemail,Lgrade,Llocation,Ltype,Ldescription);   
1102                } 
1103             } 
1104                
1105             data.close(); 
1106          } 
1107              catch(IOException e) 
1108             { output("Problem Searching for day");} 
1109          display(daySearch); 



C41 

1110       } 
1111     
1112    } 
1113  
 



C42 

1114 /*** 
1115 ====================================================== 
1116 ====================================================== 
1117  
1118 LINKLIST CLASS 
1119  
1120 ====================================================== 
1121 ====================================================== 
1122 ***/ 
1123  
1124     class LinkList 
1125    { 
1126     
1127       private Node head = null; 
1128       private Node tail = null; 
1129       private Node display = null; 
1130     
1131        public void add(String Lclub,String Lday,String Lorganizer,String 
Lemail,String Lgrade,String Llocation,String Ltype,String Ldescription) 
1132       /** 
1133       The add method adds another node to the linklist 
1134       Parameters: String Lclub 
1135       String Lday 
1136       String Lorganizer 
1137       String Lemail 
1138       String Lgrade 
1139       String Llocation 
1140       String Ltype 
1141       String Ldescription 
1142        
1143       Pseudocode: 



C43 

1144       if the head is equals to null, add at beginning 
1145       else, add at end.  
1146       **/ 
1147       { 
1148        
1149          if(head == null) 
1150          { 
1151             head = new Node(); 
1152             head.name = Lclub; 
1153             head.day = Lday; 
1154             head.organizer = Lorganizer; 
1155             head.email = Lemail; 
1156             head.grade = Lgrade; 
1157             head.location = Llocation; 
1158             head.type = Ltype; 
1159             head.description = Ldescription; 
1160             head.next = null; 
1161             tail = head; 
1162          } 
1163          else 
1164          { 
1165             tail.next = new Node(); // adds node last 
1166             tail.next.next = null; // needs to make new pointer for end 
1167             tail = tail.next; //end needs to be changed because there is a new 
pointer  
1168             tail.name = Lclub; 
1169             tail.day = Lday; 
1170             tail.organizer = Lorganizer; 
1171             tail.email = Lemail; 
1172             tail.grade = Lgrade; 
1173             tail.location = Llocation; 



C44 

1174             tail.type = Ltype; 
1175             tail.description = Ldescription; 
1176          } 
1177       } 
1178     
1179        public void removeHead() 
1180       /** 
1181       The remove head method removes the head from the linklist 
1182        
1183       Pseudocode: 
1184       if the head is equals to null, print error message 
1185       else, head = head.next.  
1186       **/ 
1187       { 
1188          if(head == null) 
1189          { System.out.println("The list is empty");} 
1190          else 
1191          { 
1192             head = head.next; 
1193          } 
1194       } 
1195     
1196        public void removeTail() 
1197       /** 
1198       This method reomves the tail from the linklist. 
1199        
1200       If the head is equal to null, 
1201       give error message 
1202       else if head.next is equal to null, both head and tail are null. 
1203       else, if head.next.next = null, temp.next = null.  
1204       **/ 



C45 

1205       { 
1206          Node temp = head; 
1207          if(head == null) 
1208          { 
1209             System.out.println("The list is empty"); 
1210          } 
1211          else if(temp.next == null) 
1212          { 
1213             head=null; 
1214             tail=null; 
1215          } 
1216          else 
1217          { 
1218             while(temp.next.next == null) 
1219             { 
1220                temp.next = null;             
1221             } 
1222           
1223          } 
1224       } 
1225     
1226        public Node displayNextNode() 
1227       /** 
1228       This displayNextNode method displays the next node. 
1229        
1230       Pseudocode: 
1231       if the node is equals to null, it is the head 
1232       otherwise, node is quals to node.next.  
1233       return the node.  
1234       **/ 
1235       {   



C46 

1236        
1237          if(display == null) 
1238          { 
1239             display = head; 
1240          } 
1241          else 
1242          { 
1243             display = display.next; 
1244          } 
1245          return display; 
1246       } 
1247     
1248     
1249    } 
1250  
1251     class Node   
1252    {  
1253       String name=""; 
1254       String day=""; 
1255       String organizer=""; 
1256       String email = ""; 
1257       String grade = ""; 
1258       String location = ""; 
1259       String type = ""; 
1260       String description = ""; 
1261       Node next; 
1262    } 
1263  
 



C47 

1264 /*** 
1265 ====================================================== 
1266 ====================================================== 
1267  
1268 ADMIN CLASS extends TEACHER 
1269  
1270 ====================================================== 
1271 ====================================================== 
1272 ***/ 
1273     class Admin extends Teacher 
1274    { 
1275       Button bNewnT = addButton("New Teacher",50,290,100,50,this); 
1276       Button bDeleteAll = addButton("Delete All Clubs",50,340,100,50,this); 
1277       Button bCountClubs = addButton("Stats",700,90,100,50,this); 
1278       Button bDisplayTeachers = addButton("Display Teachers",700,140,100,50,this); 
1279     
1280        public Admin() 
1281       { 
1282          setSize(850,400); 
1283       } 
1284     
1285        public void actions(Object source, String command) 
1286       { 
1287          if(source == bNewnT) 
1288          {  
1289             try{ 
1290                 
1291             String tname = input("Name of teacher"); 
1292             if(tname.length() < 1) 
1293             { 
1294                output("Please type in a name of a teacher"); 



C48 

1295             } 
1296             else 
1297             {String password = input("Password"); 
1298                String apassword = input("Re-type password"); 
1299                if(password.length() <1) 
1300                { 
1301                   output("password too short"); 
1302                } 
1303                else 
1304                {          
1305                   if(password.equals(apassword)) 
1306                   { checkDuplicated(tname,password); } 
1307                   else 
1308                   { 
1309                      output("passwords do not match"); 
1310                   } 
1311                } 
1312             }} 
1313             catch(Exception ex) 
1314             { 
1315                output("Could not add new teacher"); 
1316             } 
1317          }  
1318          if(source == bDeleteAll) 
1319          {  try 
1320             { 
1321             String answer = input("are you sure you want to delete ALL club list?"); 
1322             if(answer.equalsIgnoreCase("yes") || answer.equalsIgnoreCase("y")) 
1323             { deleteAll(); } 
1324             else  
1325             { output("Clubs not deleted");}  



C49 

1326             } 
1327             catch(Exception ex) 
1328             { 
1329                output("Club aren't deleted"); 
1330             } 
1331          } 
1332          if(source == bDisplay) 
1333          { 
1334             display(); 
1335          } 
1336          if(source == bSearch) 
1337          { 
1338             new Search(); 
1339          } 
1340          if(command.equals("Help|Quit")) 
1341          { 
1342             System.exit(0); 
1343          } 
1344          if(command.equals("Help|Back to Main Menu")) 
1345          { 
1346             this.dispose(); 
1347             new Main(); 
1348          } 
1349          if(command.equals("Help|Help")) 
1350          { 
1351             tDisplay.setText("Welcome, Admin. Please press any button in order to 
perform its action."); 
1352          } 
1353          if(source == bNew) 
1354          {  
1355             output("Sign in as a teacher please"); 



C50 

1356          } 
1357          if(source == bDelete) 
1358          { 
1359             output("Login as the teacher who created the club to delete it"); 
1360          } 
1361          if(source == bCountClubs) 
1362          { countAllClubs(); } 
1363          if(source == bDisplayTeachers) 
1364          { 
1365             displayTeachers(); 
1366          } 
1367        
1368       } 
1369        public void displayTeachers() 
1370       /** 
1371       The display Teachers method will be used by the admin to the find the 
passwords of all the teachers. 
1372       This could be used if the teacher has forgotten their password. 
1373       Before: there must be a text file 
1374       After: the passwords and the teachers are displayed. 
1375        
1376       Pseudocode: 
1377       read the file 
1378       read name of teacher 
1379       read password 
1380       display them 
1381       go on until file is done 
1382        
1383       **/ 
1384       { 
1385          tDisplay.setText(""); 



C51 

1386          try 
1387          { 
1388             BufferedReader file = new BufferedReader(new 
FileReader("f:\\teacherprofiles.txt")); 
1389             while(file.ready()) 
1390             { 
1391              
1392                String nameTeacher = file.readLine(); 
1393                String passwordTeacher = file.readLine(); 
1394                tDisplay.setText(tDisplay.getText() + nameTeacher + "\n" + 
passwordTeacher + "\n"); 
1395              
1396             } 
1397          } 
1398              catch(IOException e) 
1399             {} 
1400       } 
1401        public void deleteAll() 
1402       /** 
1403       The delete all method will allow the administrator to delete all of the 
content of the random 
1404       access file in one click. This is in case the year is over and there is 
definitely not going to be any use for the current list anymore. 
1405       Before: the random access file has content in it 
1406       After: the random access file has no content in it 
1407        
1408       Pseudocode: 
1409       Open up random access file 
1410       Set length to zero 
1411       **/ 
1412       { 



C52 

1413          try  
1414          { 
1415             RandomAccessFile data = new RandomAccessFile("clubs.dat","rw"); 
1416             data.setLength(0); 
1417             data.close(); 
1418             output("Clubs deleted"); 
1419          } 
1420              catch(IOException e) 
1421             { output("Could not delete file"); } 
1422        
1423       } 
1424     
1425        public void countAllClubs() 
1426       /** 
1427       This method is a very simple method to count all the clubs in the random 
access file. 
1428       The administrator might use it in order to quickly check how many clubs were 
added since the last time 
1429       he checked the program. 
1430        
1431       Pseudocode: 
1432       Open random access file 
1433       Count all the clubs 
1434       Display the count 
1435       **/    
1436       { 
1437          try 
1438          { 
1439             RandomAccessFile data = new RandomAccessFile("clubs.dat","rw"); 
1440             long records = (data.length()+299)/300; 
1441             output(records + " club(s) in the file"); 



C53 

1442             data.close(); 
1443          } 
1444              catch(IOException e) 
1445             { output("Error occured while trying to count clubs");} 
1446       } 
1447     
1448     
1449        public void checkDuplicated(String name, String password) 
1450       /*** 
1451       This method checks whether or not the administrator is trying to add in a 
teacher profile that already exists.  
1452       Before: teacher has not been checked for duplicated 
1453       After: teacher has been checked for duplicated 
1454       Parameters: name, password 
1455        
1456       Pseudocode: 
1457       Open up file 
1458       Compare all the teacher names to the name in the parameter 
1459       If it is the same 
1460       Do not let them add it 
1461       If it is different 
1462       Execute the add nprofile method 
1463       ***/ 
1464       {      
1465          try 
1466          {  
1467             BufferedReader file = new BufferedReader(new 
FileReader("f:\\teacherprofiles.txt")); 
1468             while(file.ready()) 
1469             { 
1470                String Cname = file.readLine(); 



C54 

1471                if(name.equals(Cname)) 
1472                {  
1473                   output("This teacher already exists"); 
1474                   return; 
1475                 
1476                } 
1477             } 
1478             output("adding new teacher"); 
1479             nprofile(name,password);  
1480           
1481          } 
1482              catch(IOException e) 
1483             { 
1484                output("could not add new teacher, error occured with file");  
1485             } 
1486        
1487       } 
1488     
1489     
1490        public void nprofile(String name,String password) 
1491       /*** 
1492       This method writes in a new profile for the teachers. 
1493       Before: there is no new teacher profile 
1494       After: there is a new teacher profile 
1495       Parameters: Name of profile and password 
1496        
1497       Pseudocode: 
1498       Open file 
1499       Write in the name, password 
1500       Close file    
1501       ****/ 



C55 

1502       { 
1503        
1504          try 
1505          { 
1506             PrintWriter file = new PrintWriter(new 
FileWriter("f:\\teacherprofiles.txt",true)); 
1507             file.println(name); 
1508             file.println(password); 
1509             file.close(); 
1510          } 
1511              catch (IOException e) 
1512             { output("Could not write in name");} 
1513          output("adding worked"); 
1514       } 
1515     
1516     
1517     
1518    } 
1519



C56 

Usability 
 
The program allows the user, specifically the teacher to add clubs in a very easy way. The 
use of buttons and advance GUI features give the program an advantage. The entire 
program has implemented buttons and menus. Notice how in the talks with my end users 
there was a demand for the users to be able to go back to the main menu at any point. 
This is implemented into my program and allows the user to switch to the splash screen at 
any point. 
I though what I did well was specifically in the adding a new club. While it is not perfect, 
I thought there were a few features in which I specifically paid attention to the issue of 
usability: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notice how there is no place to enter the name of the organizer of the club. This is 
because when the teacher signs in, their name will automatically be considered as the 
organizer, and when they save a new club into the file, and their name will be saved as 
well. This prevents teachers from creating clubs that do not belong to 
them. 
In addition to this, I made sure that for day and for type there is only 
an option bar, and they cannot make up something for this. This is so 
that when someone does a search there is only one way to search for 
day and type, and it creates much more reliable results. 
Thus, I implemented this feature in the search class as well: right à 
This corresponds to my goal in section A, in that it is a useful search 
option which makes searching so easy. Also, it helps to create an 
effective database that will correspond with days and types (have the 
same format. 
There is a help option in every class. This gives the user who is not 
sure what to do the option to see what to do in the particular window 
they are viewing. This help option can be accessed in the menu bar.  



C57 

 
Notice how my program is green. With the aid of GUI I managed to create labels, buttons 
and menus and even color the background of my program. While this is a minor part, in 
the real life most software that is bought is usually bought because of how it looks and 
how it appeals to the costumer, and not by the quality of the code, as the costumer does 
not see that part of the software. Therefore, I felt that this was an important part of the 
program which made its usability high. 
 
Another feature that would go in the usability section is the fact that the clubs database, 
also known as the random access file, is on the local server. Meaning anyone who has the 
program installed on their computer and is connected to the school server can access it. 
This makes it accessible to nearly everyone in the school community. It also means that 
adding clubs and deleting them will all be done in one file, which will not need to be 
updated as the program accesses it in its location.  
 
Another feature is the outputs I have put in my program. As can be seen in part D of my 
program, there are a lot of outputs that give feedback to the users. For example when a 
teacher has added a club, the program tells him that the club has been added successfully. 
When an admin adds a teacher, the program tells him that the teacher has been added 
successfully. This is shown in a lot of parts of my program in part D. 
 
To refer back to my A2 criteria: 
A condense and effective database of all clubs and organizations in our school 
Usability: the statement in itself is a usability issue. Therefore, I feel that I have actually 
completed this goal, my program should be a very “usable” program in itself. 
 
Effective access and use of program in order to find out information about clubs 
and organizations 
Usability: with the mentioned usability I have done in this section thus far (like the GUI 
for example and the fact that the random access file is stored on the servers), it allows the 
students to access the program easily to find out information 
 
Useful search options, which will allow users to find clubs uncomplicatedly 
Usability: the search options are a usability issue. I have made it so that there are three 
search options, which allows the user to find results that match what they need and what 
the are looking for. This is one of the most important features in my program.  
 
Teachers will be able to add their own new clubs 
Usability: teachers ARE able to add their own club. And when they do this on the shared 
random access files, the clubs are automatically accessible by all of the programs on the 
computers (that is if the program is installed on the computer).  
 
Teachers are able to delete their club 
Usability: Teachers are able to delete their own clubs that they have created (and thus no 
vandalism can be produced by teachers deleting other teachers clubs). The second they 



C58 

delete a club, since the random access file is on the server, all of the users will be affected 
by this.  
 
Administration of the program 
Usability: the administration of the program allows that there are teacher profiles which 
allow the creation and deletion process of clubs with an emphasis on security. 



C59 

Handling Errors 
There are many error handling functions in my program. When trying to log in, and the 
teacher does not put in a name, the program sees that the string wasn’t entered and the 
following error output will appear: 

 
Here’s the code for this error handling: 
if(source == bTeacher) 
         { 
            try{ //error handling 
            String name = input("NAME: (Firstname Lastname)"); 
            String mpassword = input("PASSWORD"); 
            if(name.length() < 1) 
            { output("No name typed, try again");} 
            else if(mpassword.length() < 1) 
            {} 
            else 
            { 
               signT(name,mpassword); 
            }} 
            catch(Exception ex) 
            { output("Login failed"); }  
         }



C60 

accordingly, if the password does not match the name while searching through the 
teacher profile text file, the following error will appear: 

 
In addition, if the login does not work for a different reason (the teacher doesn’t have an 
account or they misspelled their own name) the following error appears: 

 



C61 

If the teacher does manage to log in, and they try to add a new club that already exists, 
the algorithm checks and if it finds that the club already exists: 

 
Nevertheless, if they try to add a club, one of the following errors might occur: they 
forget to put in something for the fields (except description which is optional): 

 



C62 

Forgot to put in location 
Didn’t type a grade: 

 
 
No name for the club: 

 
 



C63 

the following code demonstrated the error handling for my new club and for the past few 
screenshots: 
if(name.length() < 1) 
            { 
               output("Please write a name for the club"); 
            } 
            if(day.equals("-DAY-")) 
            { 
               output("Please select a day"); 
            } 
            if(grade.length() < 1) 
            { 
               output("Please type in a valid grade (e.g. 9-12)"); 
            } 
            if(location.length() < 1) 
            { 
               output("Please type in a location"); 
            } 
            if(type.equals("- TYPE -")) 
            { 
               output("please select type"); 
            } 
            else 
            { 
             
               validate(name,day,organizer, email, grade, location,type, description);  
               this.dispose(); 
            } 
 
and the validate method, which validates the email: 
 
       public void validate(String name, String day, String organizer, String email, String 
grade, String location, String type, String description) 
      {      
       
         if(email.indexOf(" ") > -1) 
         {output("There can't be any blank spaces in the email address");} 
         else if(email.indexOf("@") < 2) 
         {output("Email is not valide, please try again");} 
         else //if the email is validated, it will add it  
         {addNewClub(name,day,organizer,email,grade,location,type,description);} 
      }



C64 

The admin might put their password incorrectly: 

 



C65 

Or, they might press cancel instead of putting in a password, in this case using try and 
catch: 

 
 
Here’s the code I wrote for this part: 
if(source == bTeacher) 
         { 
            try{ //error handling 
            String name = input("NAME: (Firstname Lastname)"); 
            String mpassword = input("PASSWORD"); 
            if(name.length() < 1) 
            { output("No name typed, try again");} 
            else if(mpassword.length() < 1) 
            {} 
            else 
            { 
               signT(name,mpassword); 
            }} 
            catch(Exception ex) 
            { output("Login failed"); }  
         }



C66 

When the admin is logged in and tried to delete a specific club, the following error will 
appear:  

 
 
When trying to add a new club, the following error will appear for the admin: 

 
 
this is to remind the admin that only teachers can add clubs. 



C67 

When the admin presses the “delete all clubs” he might press cancel, in which case the 
following error appears using try and catch: 

 
To demonstrate this, I have included the code: 
public void deleteAll() 
      { 
         try  
         { 
            RandomAccessFile data = new RandomAccessFile("clubs.dat","rw"); 
            data.setLength(0); 
            data.close(); 
            output("Clubs deleted"); 
         } 
             catch(IOException e) 
            { output("Could not delete file"); } 
       
      } 
    
Note the use of the try and catch which is the reason for my error handling.



C68 

when the admin tries to add a new teacher, and fails to do so (that is, he cancels the 
action), the following error message will appear using try and catch: 

 
in addition, if there is no name for the teacher the following error message will appear: 

 
 



C69 

When the password of the new teacher does not match the re-type of the password the 
following error message will appear: 

 
 
When the admin tries to add a teacher that already has a profile, this message appears: 

 



C70 

When a search class is open, there are a few errors that might occur. 
For example, the user who commits a type search might not actually choose a type: 

 
Similarly, they might not choose a day when committing a day based search: 

 
Here’s the code for this error handling: 
 
               int sAmount; 
               String amount = tChoiceb.getSelectedItem();  
               if(amount.equals("-ALL-")) 
               {sAmount = 0;} 
               else 



C71 

               {sAmount = Integer.parseInt(amount);} 
               search(searchWord,sAmount); 
 
When committing a keyword based search they might not put in a keyword, and instead 
of the program displaying all the clubs, it will display an error: 

 
 
Many of the errors messages I have shown prevent the errors by try and catch. Especially 
in cases in which the “cancel” button was pressed.  
An example taken out of the code, in would be the following: 

 public void countAllClubs() 
      /** 
      { 
         try 
         { 
            RandomAccessFile data = new RandomAccessFile("clubs.dat","rw"); 
            long records = (data.length()+299)/300; 
            output(records + " club(s) in the file"); 
            data.close(); 
         } 
             catch(IOException e) 
            { output("Error occured while trying to count clubs");} 
      } 
    

In this case, this didn’t appear on the screenshots as the club data file does exist and is 
where it belongs. Therefore, this error wasn’t something that I wanted to produce, as if I 



C72 

could have not replaced the clubs file afterwards all the work I had put into creating new 
clubs (my example data) would have been lost and I wouldn’t have been happy. 
This is an example, out of many, of how I used try and catch, but didn’t produce 
screenshots for. I felt it is also unnecessary to put in all the code that has try and catch in 
it, as there is a lot of it. The try and catch error handling I have not put in the screenshots 
comes only from methods which use the data files (random access and text).  



C73 

Goals listing with reference to section D 
 
A condense and effective database of all clubs and organizations in our school 
Everywhere (the whole program is this goal) 
 
Effective access and use of program in order to find out information about clubs 
and organizations 
Everywhere (the way the user interacts with the program, GUI, buttons, simple but 
effective search options, etc). 
 
Useful search options, which will allow users to find clubs uncomplicatedly 
D3-D8 
 
Teachers will be able to add their own new clubs 
D12-D13 
 
Teachers are able to delete their club 
D14-D15 
 
Administration of the program 
D16 



 D1 

Part D – Student Club and Organization 
 
Documentation  
 
The following screenshots are a regular run of the program that 3 different kind of users 
might have done (teacher, student and admin). Read the comments I have made to follow 
it through. 
The following screenshot is of the main menu, also known as the Splash Screen. 

 



 D2 

If we choose to enter as a student, we will get the following screen: 

 
pressing help in the menu bar, and then choosing the “help” option: 

 



 D3 

Pressing the “Display Clubs” button will give us the following: 

 
The clubs that are currently on the screen are in the random access file. 
When pressed the search button, the search class opens: 

 



 D4 

Here there are different ways of searching for a club. This class and different ways of 
searching fulfill my goal for creating a successful databse in which students can search 
for club in A2 criteria.  
Searching by keyword, for the word “yoga”, with 1 maximum results gives the following: 

 



 D5 

And the results: 

 
 
 
Nevertheless, if we search for yoga with 5 maximum results: 

 



 D6 

The following results are given: 

 
Notice how here there are more results now. Not necessarily 5 (as 5 is the MAXIMUM 
amounts of results possible), but as many with the corresponding keyword in their record.  
Next, a day based search was conducted with Monday (M) as the day: 

 



 D7 

and next, a type search, searching for clubs based on service: 

 
 
 
Next, a type based search with no type chosen: 

 



 D8 

And a day based search without a day chosen: 

 
 



 D9 

Logging in as a teacher: 

Putting in the name: 

 



 D10 

And password: 

If it works, the teacher will get to the following screen: 

 



 D11 

Next, the teacher can use the help file: 

 
Which will give the teacher the following: 

 



 D12 

Displaying the clubs for the teacher will look like this: 

 
Next, the teacher might want to add a new club, this again reflects my goal for section A2, 
as the teacher can create a club: 

 



 D13 

And fill in the club: 

 
When the club has been created, a message appears: 

 
 



 D14 

When club is saved, teacher can display all clubs against and look in the end of the list: 

 
 
Now, the teacher will delete the club they have just created, which again reflect another 
of my A2 goals, as the teacher can delete a club: 

 
 



 D15 

And, while displaying all clubs again, the chess has appeared to disappear: 

Also, a message is given out when a club is deleted: 

 
 



 D16 

Admin has to log-in, the admin class fills my goal in A2 for the administration of the 
program: 

 
 
 
Put in the password: 

 



 D17 

 
This is how the admin menu looks like: 

 
 



 D18 

Admin cannot create a new club, only teachers can, so when they press the new club 
button, they are reminded to log in as a teacher: 

 
 
therefore, they cannot delete clubs either: 

 



 D19 

If the admin wants to delete all the clubs, they need to press the delete all clubs button: 

 
 
if they say “yes” or “y”, they will delete all the clubs: 

 



 D20 

And a message appears: 

 
 
Thereafter, pressing the display clubs button will give the admin this: 

 
 



 D21 

when there are clubs in the file, the admin can check how many clubs there are: 

 
 
in order for more teachers to add clubs, they need to have an account. The admin can add 
accounts by pressing the new teacher button: 

 



 D22 

then, by entering a name: 

 
 
and a password: 

 



 D23 

They then need to retype the password: 

 
 
Finally, they can view the entire teacher profiles and their passwords by displaying the 
teachers (name, password, name password, etc): 

 



 D24 

Evaluating Solutions 
 
Did my program work? 
My program worked. Surprisingly enough I found that it worked and that I actually did a 
good job with it. The random access file, while at first was a little difficult to deal with, 
worked. Clubs can be saved, deleted and loaded. The admin can create new teacher 
profiles and all of the clubs data can be put on a network and accessed by different 
computers. 
 
Did my program address the criteria for success? 
My program addressed the criteria for success. I have felt that I have completed 11 
mastery aspects like I addressed it in part B. after analyzing the program I had managed 
to find a solution which worked, which in my opinion was a big part of the criteria for 
success. Not only that, I managed to do so with a detailed design stage which I followed 
through and actually helped me a lot. The end user was also satisfied with the end result 
and it was helpful to have him during the various stages of my program. 
For my goals, here are the recap and my explanation: 
A condense and effective database of all clubs and organizations in our school 
Once the program will be used effectively, there will be a condense and effective 
database of all clubs and organizations in our school. Since I have to input example data 
when running the program, I am already starting to do this. 
Effective access and use of program in order to find out information about clubs 
and organizations 
I’ve used GUI and a reasonable user interface in order to make the program effective to 
use. To search and find clubs only takes a few steps, each consisting of a click or two. 
Therefore, I feel that this criteria has been achieved 
Useful search options, which will allow users to find clubs uncomplicatedly 
My goal was to have 3 kinds of searches – day based search, keyword based search and a 
type based search. I have successfully achieved these. In addition to achieving these, they 
are also very efficient as they are very quick algorithms and there is no waiting time for 
the user. 
Teachers will be able to add their own new clubs 
Teachers are in fact able to add their own clubs. Not only that, teachers have their own 
profile with their own personalized password. 
Teachers are able to delete their club 
The program can detect which teacher added what club, therefore, if a teacher who didn’t 
create a specific club wants to delete it, they will not be able to do so. Nevertheless, if 
they want to delete the club they have created, they can do so. 
I feel that this is one of the most important features of the program since it not only took 
me a while to figure out and when it worked I was very happy, but also because it 
prevents vandalism and creates order in my program. It is a security issue which 
nowadays in real life software programming is a very important issue. 
Administration of the program 
There is a whole admin class. I felt that this was a good achievement. It’s also a security 
issue as they are the only ones able to create new teacher profiles. 
 



 D25 

 
Did it work for the same data sets but not for others? 
The program has two data sets. The club file data set and the data set for the teacher 
profiles. If the user (Teacher or Admin in this case) decide to put something into the input 
values that does not work, the program will usually reject it. That is, if for example a 
teacher decides to create a new club but puts in random names and emails that make no 
sense, the program will not be able to detect it. Nevertheless if the teacher puts too many 
words into the description and then doesn’t fill out some other information the program 
will not accept it.  
The admin can only put in names of teachers and their passwords. Therefore, the admin 
might also put in names of teacher who do not exist. The program cannot check if the 
names are in fact correct. 
It would be too complex and beyond my time and resources to create a program that 
checks for the validity of the above mentioned things. The program was made with the 
intention of it benefiting the school community and therefore, also expecting the users 
who use it to have some common sense and not vandalize it.  
 
Does the program in its current form have any limitations? 
Yes. Like many software these days, my program is not 100% fully completed and there 
are limitations. 
First of all, and the most important in my opinion, is the fact that you cannot sort the 
clubs. This feature has been missing but bothering me the whole time. Frankly, it was not 
100% necessary in order to complete the program, but it was on my list of things to do in 
case there is extra time and resources to allow it. I didn’t get the chance to program this 
part, and while the program does work without it, it would have benefited the user a 
whole lot.  
In addition, it will accept a lot of values for many of the inputs. Something, that again, 
would have taken me a lot of time to program since there are so many input options 
(especially when creating new clubs). Nevertheless, it is up to the users not to vandalize 
and use their common sense when working with the program. 
 
What additional features could the program have? 
As I mentioned, better input rejection and a sorting algorithm (or perhaps a few sorting 
algorithms). If this could be done in the revision of the program in the future, I would 
consider the program to be pretty much in perfect condition for the use in the school. 
A log file of when teachers have added clubs or deleted so that the admin can look over it. 
Therefore, a function which will let the admin to see over time how many clubs have 
been added, and will have more statistical information rather than just the amount of 
clubs in the file at the moment. 
Also, allowing the admin to delete teacher profiles or change their passwords and an 
algorithm that will sort them in an alphabetical order in the text file. 
 
Was the initial design appropriate? 
It appears that the design was in fact appropriate. Perhaps the only thing that could have 
been done better was the way the clubs were presented. By that I mean that perhaps not 
everyone will have the time and will put any effort into scrolling up and down, but there 



 D26 

was no real way to avoid that using java. That is, I couldn’t think of a better method to 
present the clubs other than the text areas. In addition, I didn’t want the program to be too 
big when it runs. I didn’t want it to cover the whole screen as I felt that was unnecessary 
and a lot of people would not like it. Therefore, I kept it as small as possible, considering 
the fact that the clubs need to appear. It is possible, in the future, if requested by many 
users to make the screen and the text areas bigger if they feel it is necessary. Since the 
computer science internal assessment doesn’t have a part in which we let many people 
use the program over a longer period of time and assess it, I could not get response from 
many people over the design and could only refer back to my opinion and the end users 
opinion. In a program like mine that will be used by the whole school community. this is 
not good as so many people use the program. In the future therefore, I would let people 
give feedback on the design, even though I tried to make it as appropriate as possible.  
 
Searching 
The searching algorithms in my main program differ a little bit. Take for example my day 
based search. It goes through the whole file, but it accesses for every record, straight to 
the place where the day is stored and compares it with that the user has chosen. Therefore, 
it is a very quick search. Even if there were over 200 clubs in the file, it would not take 
long to do the search. This works the same way for the type based search. For the 
keyword search the algorithm creates a long string out of every record and see if the 
string entered by the user matches anything from that long string the algorithm produced. 
This doesn’t take long either. I felt therefore that my searching algorithm was efficient as 
searching algorithms usually are with random access files.  
 
Alternative Approaches 
I felt that my design was most appropriate for the program. The design was based on an 
object oriented approach.  
There are in fact differences (and more features) between the initial prototype in part A 
and the end result in part D. obviously, since ideas develop further once I have actually 
started working on the program and realizing what I can and cannot do. 
I feel that for my search class it wasn’t as effective as I wanted it to be.  
Perhaps a filter based search would have been more successful, in which all clubs are 
displayed and the user chooses filters which make the clubs that do not fit in those 
categories disappear of the screen and the user ends up with a few clubs that fit the filters 
they have chosen. Some of these filters could have been: location, day, time, grades, etc. 
but instead I chose a search option of 3 different searches.  
Nevertheless, this could have been a different approach that might have even been more 
successful than the one I have chosen. Other than that, as I have already mentioned, a lot 
of parts of my program would have been more successful with the addition of sorting 
algorithms. 



 D27 

User Documentation 
 
For the program to run on a computer: 
Windows XP, 512MB RAM, at least 1GB free of disk storage 
Connection to local Frankfurt International School Intranet and servers 
Java version 1.4 must be installed on the computer. 
 
Admin must: 
Create/copy the club data file and the program code into the Z: drive in the local school 
server, in the following location: Z:\CarmelKozlov\  
The clubs file data must be called clubs.dat and the teacher profile text file must be called 
teacherprofiles.txt. 
A shortcut on each computer must be created which will look like this: 

 



 D28 

The admin should check that each shortcut works on the computer, and that when he runs 
the shortcut the following screen 
appears:

 
 
Then, the admin must create teacher profiles so that they can add clubs. After logging in 
with the given password for the admin (which is set to xyz12345), the admin must create 
new teacher profiles: 

 



 D29 

When there are a few teacher profiles, the admin can look at all of them and see their 
passwords: 

 
 
And the teachers should log-in using the teacher login in the splash screen: 

 
 



 D30 

Teachers can then create new clubs by pressing the create new club button and filling in 
the following form: 

 
When day stands for day of club that takes place, name is the name of the club, email is 
the email of the teacher organizing it, grades that can participate in the activity, typical 
meeting location for the club, the type of club or activity and an optional part of 
description.  



 D31 

When a student would like to search for a club all the need to do is press the student 
button on the splash screen: 

 
 
Then, they can either display the club by pressing the display button: 

 
or they can search. 



 D32 

Searching can be done by three ways: day search, type search or keyword search: 

 
 
When the user is done with the program, they should shut it down: 

 
Or press help at any given point during the program.  
 



 D33 

Admin 
The password for admin is “xyz12345” and it is not possible to change this. Make sure 
you do not forget it or lose it. 
To create a new teacher profile, you need to press the teacher profile button. Enter the 
name of the teacher in the form of Firstname Lastname. You can only change these if you 
access the profiles through the text file, but the intention of this program is not to change 
it and rather for you to put in correctly in the firs place. Middle names are also acceptable, 
but realize that the program had a certain name capacity and cannot exceed 50 bytes. 
If a teacher forgets their password you can click the display all button and it will show 
you all the names of the teachers with their passwords beneath their names in the order 
you have created the profiles. 
You cannot create new clubs or delete any clubs, the buttons are there to remind you that 
if you want to do so, you need to sing in as a teacher (in case the admin has also an 
account for themselves and would like to add a new club). 
The Stats button will tell you how many clubs there are in the file. This is for you to see 
how many teachers have added clubs and to see if there are improvements from the last 
time you checked how many clubs there are in the file. 
The delete all button will actually empty the random access file, so make sure that you 
only do something like this in the end of the year. It will accept the input of “y” or “yes”, 
otherwise any other input will be ignored.  
 
Teacher 
Log in with your EXACT name that you have chosen with the admin or that he has given 
you, and type in your password. 
You can create clubs and delete the ones you have created. You cannot delete clubs that 
you have not created. You cannot create clubs with the same name. 
When you are creating a new club, use your common sense. that is, for location put the 
most common location your club meets in. for the name of the club, put the exact name. 
for the day, choose the correct day, and for weekends, choose S. You do not have to type 
a description but it is better if you do, just do not make it too long, as the program will 
have to cut your description short. For grades, something like this: 9-12 would be a good 
input. You may also write “adults” if it is not intended for the students of the community 
but for their parents. It is up to you to decide who can come to your club. 
You may also use any other part of the program besides the admin one. 
 
Student 
You may search for clubs using three kinds of searched: day based search, type based 
search and keyword based search. You may put anything in the keyword based search, 
even one letter will produce answers for you.  
Do not vandalize the system in any way. 
When you do a search based search, choose the write letter for the names of the day. S 
will stand for weekend in general; it doesn’t necessarily mean Saturday or Sunday. If you 
need more information other than the one given to your in the program, you may email 
the teacher who has set up the club. That is what their email information is for. 



 D34 

Mastery Factors 
 
Mastery Factor Explanation Code line, if 

applicable 
Adding to Random Access 
File 

My random access file, 
“clubs.dat”, has a method to 
add clubs to it in the New Club 
class, called addNewClub(). 

640-680 

Deleting from Random 
Access File 

Teachers can delete clubs from 
the file using the delete() 
method in the teacher class. 

262-350 

Searching in Random Access 
File 

Searching in the random access 
file is done in the Search file, 
and can be done with three 
methods, search(String day), 
search(String word, int amount) 
and searchType(String type).  

700-1100 

Recursion None  
Merging two sorted data-
structures 

None  

Polymorphism In my search class, I have two 
search methods, search(String 
day) and search(String word, 
int amount). 

1049, 
857 

Inheritance My admin class extends my 
teacher class which extends my 
student class.  

1273, 174, 372 

Encapsulation In my linklist class, there are 
private nodes that can only be 
accessed using get and set.  

1127-1129 

Parsing a text file None  
Hierarchial composite data 
structure 

I’ve got linked list, in which 
each node has more than one 
data record in it. To be more 
precise, each node in my linked 
list has 6 strings in it.  

1251-1261 

Five SL mastery factors Searching in both random 
access file and normal text file, 
use of additional libraries, user-
defined objects, simple 
selection, loops, nested loops, 
user defined methods with 
parameters. 

Everywhere 

ADT # 1 – Add and Retrieve 
data 

This will be in my Link List 
class, displayNextNode() and 
add(). 

1115-1263 



 D35 

ADT # 2 – Handeling Ends Is also in my LinkList class, 
can be seen in removeTail() 

1115-1263 

ADT # 3 – Many error-
handeling 

Spread throughout my LinkList 
class, in nearly all of the 
methods.  

1115-1263 

ADT # 4 – All methods, 
Robust 

None  

 


